Как пользоваться тестером напряжения. Как пользоваться тестером и правильно измерить амперы, вольты, омы Обозначения на тестере

Содержание:

С начала использования электрических цепей и электроприборов на бытовом и промышленном уровне для измерения напряжения, тока и сопротивления использовались отдельные приборы. Амперметром мерили величину тока, вольтметром - напряжение и омметром - сопротивление в электрической цепи. Был отдельный тестер напряжения, тока и сопротивления. Как пользоваться тестером напряжения старого образца, рассматривать нецелесообразно. С развитием технологий был создан стрелочный комбинированный прибор, который может тестировать все перечисленные параметры, прозванивать целостность электрических цепей. Современные тестеры называют мультиметрами. Они включают в себя гораздо больше функций, имеют удобные малогабаритные размеры, жидкокристаллические дисплеи для отображения величины измеряемых параметров. Очевидно, работа с современным тестером, комбинированным прибором облегчает процесс измерений. Большинство потребителей определились, чем пользоваться - старым тестером или мультиметром. Инструкция к приборам кратка, научиться не сложно, рассмотрим подробнее, как работать с этими приборами и правильно ими пользоваться.

Основные виды и конструкции мультиметров

Все мультиметры делят на 2 вида:

  1. Аналоговые (стрелочные) приборы, на панели которых определенным знаком или буквенным обозначением указывают шкалы измеряемых параметров:
  • Ω - шкала сопротивления;
  • I- или DCA - шкала показывает постоянный ток;
  • I ~ - шкала измерений переменного тока;
  • U- или DCV - шкала напряжения постоянного тока;
  • U~ или ACV - шкала напряжения переменного тока.

Чтобы понять, как пользоваться стрелочным тестером, надо разобраться в обозначениях и градуировке шкал для различных режимов. Для определения шкалы, на которой измеряется величина параметра, смотрите на обозначения с правой или с левой стороны. Надо отметить, что стрелочным тестером некоторые параметры измеряются более точно, чем цифровым, поэтому его предпочитают использовать инженеры, монтажники радиоэлектронного оборудования. Я для подбора нужных параметров радиодеталей пользуюсь стрелочным мультиметром. Механизмы, перемещающие стрелку прибора, чувствительны к механическим ударам, поэтому их используют на стационарных местах работы, стараются не возить на различные объекты в сумках с другими инструментами. Как пользоваться стрелочным тестером в различных режимах, разобраться не сложно, положения переключателя и обозначения одинаковы для всех моделей.

Стрелка на тестере при измерениях отклоняется, указывая на определенную величину градуированной шкалы.

  1. Цифровые приборы отображают значения в виде чисел на жидкокристаллическом дисплее, работать с тестером такого вида гораздо удобнее.

На всех приборах есть переключатель, устанавливающий режимы измерений, положение которого определяет и их пределы:

  • При измерении сопротивления в омах - три предела, до 10, 100 и 1000 Ом; (символ сектора на корпусе - Ω);
  • Пределы в измерениях в килоомах - 200k и 2000k;
  • При измерении постоянного напряжения в вольтах - 10; 50; 250 и 500 В; (символ V – или DCV);
  • Сектор измерения переменного напряжения имеет два предела - 200 и 750 V (символ V~ или ACV);
  • Постоянный электрический ток измеряется в амперах и миллиамперах, современные приборы могут измерять постоянный ток до 10 А, что обозначается надписями на корпусе возле разъема для измерений (символ DCA);
  • Постоянный ток малых величин измеряют в пределах 20; 200 mA, для проверки токов в электронных схемах.

Для прозвонки проводов и кабелей переключатель режимов измерений устанавливается в положение, обозначенное диодом или знаком зуммера. На некоторых приборах есть разъемы для проверки транзисторов и других радиодеталей с «р-n-p» и «n-p-n» переходами (символ HFE).

Кроме перечисленных функций и органов управления в комплектацию мультиметров входят провода с щупами, для подключения прибора к контактам в цепи, между которыми производятся измерения параметров. В корпусе приборов сделаны разъемы, они могут размещаться в разных местах, но имеют стандартные обозначения, как правильно подключать щупы:

  • Черный провод подключается к контакту отрицательной полярности источника питания прибора. Обозначается буквами СОМ и символом заземления.
  • Красный провод подключается на клемму положительной полярности, с обозначением «VΩmA» - для измерений величин сопротивления, напряжения, постоянного тока в пределах 20 и 200 мА. Для замера постоянного тока в пределах до 10 А красный щуп переставляется в гнездо с обозначением «DCA max 10A».

Элементом питания для большинства моделей приборов служат батарейки типа «Крона» с напряжением 9 В. Вставлять ее надо, обязательно соблюдая полярности. При снижении напряжения батареи до 6,4 В большинство приборов показывают значения параметров с большими погрешностями. Поэтому внимательно следите за состоянием зарядки батареи. Не будем вдаваться в подробности сложных измерений, проводимых профессиональными инженерами, радиотехниками и электриками. Рассмотрим последовательность действий при измерении самых востребованных величин в бытовых условиях.

Последовательность операций при измерениях в различных режимах

Конструкции моделей мультиметров могут отличаться местом расположения отдельных органов управления и индикации, но обозначения режимов и пределов измерения наносятся стандартные, одинаковые на всех приборах.

Поэтому, зная эти символы, сориентироваться в установке переключателя и щупов в нужное положение не составляет труда.

Измерение постоянного напряжения

В бытовых условиях часто приходится сталкиваться с проверкой источников питания постоянного напряжения - это аккумуляторные батареи на автомобилях, фонарях, часах, детских радиоуправляемых игрушках и других гаджетах. Для этого идеально подходит мультиметр:

  • извлеките батарею из корпуса прибора;
  • исходя из характеристик батарей мы знаем, что в автомобилях должно быть 12 В, в часах батарея на 1,5 В, в детских игрушках бывают батареи с напряжением 4,5 и 9 В. Поэтому в секторе «V-» для измерения постоянного напряжения устанавливаем переключатель режимов на отметку предела 20 В. Для транспортного средства, работающего с бортовым питанием 24 В, устанавливайте больший предел;

  • черный щуп подключается к разъему с обозначением «СОМ», красный вставляется в разъем «VΩmA»;
  • другие концы щупов подключаются к контактам батарей или аккумуляторов (любому источнику постоянного напряжения, на котором производятся измерения). Красный - к «+», черный - к «-».

На жидкокристаллическом дисплее отображаются показания в вольтах, в случае со стрелочными приборами величину напряжения надо смотреть по шкале, которая обозначена символом «U-».

Измерение переменного напряжения

Самый обычный бытовой случай - контроль напряжения в розетке от промышленной сети 220 В.

  • Щупы устанавливаются в том же положении, что и в случае с измерениями постоянного напряжения, черный - в разъем «СОМ», красный - на «VΩmA».
  • Переключатель режимов ставится в сектор «V~» на предел 750 В, при заниженном пределе 200 В прибор может сгореть в сети 220 В.

Когда величина напряжения неизвестна, измерения надо начинать с максимального предела. По мере необходимости снижать пределы для большей точности снимаемых показаний. Эти правила пользования касаются измерений во всех режимах в целях безопасности и точности замеров.

  • Вставляем щупы в розетку, на дисплее должно отобразиться 220 В, полярность в этом случае не имеет значения. На стрелочном приборе показания снимаются со шкалы с обозначением «V~».

Измерение силы тока

Надо сразу отметить, что редкие модели обладают функциями для измерения переменного тока, основная часть приборов способна измерять только величину постоянного тока в пределах до 10 А, максимум - 20 А. Для измерения переменного тока эффективно используются токоизмерительные клещи, сделанные на базе мультиметров. Эта тема требует отдельного детального рассмотрения.

Органы управления устанавливаются в следующие положения:

  • переключатель режимов ставится в сектор i- (dca) на предел измерений 10 А;
  • красный провод с щупом - в разъем 10 А, черный во всех режимах измерения остается в положении «СОМ»;
  • щупы для измерения силы тока подключаются в разрыв цепи последовательно нагрузке;
  • при показаниях прибора ниже 2 А для точности измерений уменьшите предел в этих диапазонах;

  • переключатель устанавливается в положение 200 мА или меньше в зависимости от измеряемой величины тока;
  • красный щуп переставляется в разъем «VΩmA».

На дисплее будут отображаться более точные показания при пределах измерений, близких к величине измеряемого параметра.

Прозвонка целостности проводов и измерения сопротивления

Прозвонка цепей и измерения сопротивления делаются только на обесточенных линиях, при снятом напряжении. Примеры такой необходимости в бытовой обстановке бывают различны, для контроля можно прозвонить тэн нагревательного котла, спираль утюга или матовой лампочки, когда не видно визуально целостности спирали, и в других случаях.

Положение щупов в этих режимах - «СОМ» и «VΩmA». Чтобы проверить целостность проводника, нужно выполнить следующие действия:

  • Переключатель устанавливают на символ диода или зуммера, на цифровом мультиметре будет отображаться «1».
  • Контакты щупов подключаются к концам цепи. Если цепь целая, в идеальном случае на дисплее появятся «000». Провода, спираль лампы, тэны имеют сопротивление, поэтому на индикаторе могут отображаться различные значения «003…..008» и более, в зависимости от сопротивления цепи. В любом случае это указывает на целостность цепи.

Для точного измерения величины сопротивления резисторов, катушек и других элементов устанавливается необходимый предел. На фото показано, как подключать щупы, и установленный предел 20 кОм при измерении сопротивления резистора 9,8 кОм. Когда показания на дисплее не меняются, остается «1», надо увеличить пределы измерений. На стрелочных приборах и показания снимаются с соответствующей шкалы - Ω или кΩ. Как пользоваться тестером или мультиметром, может разобраться любой человек, знающий основы электротехники на уровне школьных курсов физики.

На некоторых приборах бывают опции измерения температуры с разъемом, куда подключается провод с датчиком, и переключатель устанавливается в соответствующее положение. Основные режимы для начинающих электриков и потребителей на бытовом уровне рассмотрены. Более сложные приборы имеют функции проверки транзисторов, микросхем, конденсаторов, которые больше необходимы для профессионального электрика и требуют детального рассмотрения в отдельной статье.

Комбинированного типа электроизмерительный прибор мультиметр (multimеtеr) удобен в работе и объединяет в себе несколько функций.

Зная, как проверить мультиметр на работоспособность, можно получить корректные показания выполняемых замеров.

Как можно проверить мультиметр?

Мультиметр может иметь очень разнообразный функционал, представленный определением:

  • показателей напряжения и сопротивления, «прозвонкой»;
  • емкостных параметров конденсатора;
  • таких показателей, как освещенность и шум;
  • уровня частоты;
  • температурных показателей;
  • целостности и полярности таких элементов, как транзисторы и полупроводниковые ;
  • наличия или отсутствия дефектов на соединениях.

При выборе электроизмерительного прибора, непосредственно перед приобретением, очень важно обратить особое внимание на следующие показатели тестера:

  • наличие нанесенного на корпус логотипа, свидетельствующего о сертификации прибора по результатам государственного тестирования;
  • качественные характеристики коммутационного устройства, так как долгосрочная эксплуатация чаще всего присуща приборам, выпускаемым известными и хорошо зарекомендовавшими себя производителями;
  • показатели разрядности дисплея у приборов цифрового типа. Мультиметры, имеющие разряд 3,5, отображают значения в пределах 0,001, а при разряде на уровне 2,5 - в диапазоне 0,01;
  • показатели допустимых погрешностей, которые могут в значительной степени колебаться, но не должны превышать 10%.

Исправность мультиметра

Не менее важными критериями при выборе являются пределы, допускаемые измерениями устройства и диапазоном работы. Звуковой пробник в условиях замыкания щупов должен срабатывать практически мгновенно.

Проверка работоспособности приобретаемого электроизмерительного прибора - обязательное условие беспроблемной эксплуатации, и чаще всего осуществляется параллельным подключением к электрической розетке вольтметра с последующей сверкой показаний на приборах или при помощи батарейки.

Использование батарейки

Проверка прибора батарейкой удобна и заключается в том, что результатом смены полярности щупов становится выведение мультиметром абсолютно одинаковых показателей .

При использовании батарейки, механизм теста очень прост, и состоит из нескольких несложных этапов:

  • выбор режима работы электроизмерительного прибора, который соответствует замерам уровня постоянного напряжения;
  • установка измерительных пределов, равных 20 В.

После того, как будут приложены приборные щупы на контакты батареи, замеряются показатели напряжения и снимаются данные.

Исправная батарея показывает напряжение, равное 1,35 В. Однако, в малотребовательных приборах вполне могут использоваться элементы с уровнем заряда не менее 1,2 В. Батареи с минимальным зарядом подлежат обязательной утилизации.

Повторное тестирование позволяет проверять емкостные показатели элемента в условиях нагрузки:

  • подсоединение щупа мультиметра к контактам питающего элемента;
  • параллельное подключение нагрузочного элемента;
  • выдерживание паузы в пределах 30-40 сек.;
  • снятие полученных результатов.
Батарейки с остаточными показателями на уровне 1,1 В могут быть использованы исключительно в бытовых приборах, характеризующихся незначительной величиной энергопотребления, но при этом, качественные параметры работы аппаратуры ощутимо снижаются.

Следует отметить, что обеспечение максимальной точности получаемых измерений, предполагает предварительную установку на приборе наименьшего предела замеряемого напряжения, благодаря чему легко определяется погрешность измерений.

Важно помнить, что индикация напряжения на уровне 1,6 В при использовании стандартных элементов питания «АА», как правило, не свидетельствует о низком уровне точности электроизмерительного прибора.

Многие производители новых источников питания незначительно завышают уровень напряжения, что позволяет обеспечивать батарейке максимально продолжительный срок службы.

Максимально точные данные удаётся получить при замерах с нагрузкой, а в качестве основного нагрузочного элемента, чаще всего используется традиционная лампочка, предназначенная для установки в карманный фонарик.

Замыкание контактов в режиме измерения сопротивления

В условиях отсутствия специального оборудования, применяемого с целью калибровки измерительного прибора, проверка точности получаемых показаний определяется не только при помощи обычной батарейки, но и посредством замыкания контактов на режиме замеров показателей сопротивления.

Требуется обратить внимание на тот факт, что данные работы могут быть произведены исключительно в режиме замеров уровня сопротивления, так как некоторые модели, предназначенные для измерения других параметров, в результате замыкания контактов часто выходят из строя.

Режим измерения сопротивления/прозвонка/диодный тест

После того, как щупы будут подключены к соответствующим разъемам, и произойдёт контактное замыкание, индикатор измерительного прибора должен выражать сопротивление «О». Наличие любых других показаний свидетельствует о неисправности тестера.

При необходимости выполняется измерение резисторного сопротивления с заведомо известными показателями. Однако даже исправные мультиметры в результате неправильной эксплуатации, способны искажать получаемые данные. Используется стандартное правило подключения, при котором щуп красного цвета подсоединяется к положительному полюсу, а черный провод - к отрицательному.

Контактная часть на щупах в обязательном порядке должна содержаться в чистоте, так как присутствие припоя или ржавчины, способствует повышению сопротивления и искажению результатов замеров.

Показания прибора

Мультиметры представлены аналоговыми моделями и приборами цифрового типа. отличаются по функционалу, а также точности получаемых показаний. Популярные аналоговые мультиметры все данные о выполняемых измерениях показывают стрелкой и шкалой. Работа с таким типом прибора не всегда удобна и требует некоторой сноровки, а кроме всего прочего, стрелочный тестер нужно держать в стабильно зафиксированном положении, что не позволит стрелке «скакать».

Мультиметр Aneng AN8001

В цифровых мультиметрах результаты замеров, а точнее показания, выводятся на удобный ЖК-экран, и имеют вид интуитивно понятных цифровых значений, что исключает ошибки, которые допускают малоопытные мастера при снятии данных.

Такие тестирующие приборы очень просты в эксплуатации, поэтому получили широкое распространение. Стоимость любого измерительного устройства варьирует в зависимости от качественных характеристик, функционала и точности получаемых показаний. Стандартный тестер позволяет произвести , напряжения и сопротивления.

Чтобы правильно считывать цифровые данные результатов замеров, нужно помнить, что при диапазоне измерений 200mV показатели на экране составляют «1», при 2,0V - «1,607», величины 20V соответствует уровень «1,60», а 200V - «1,6».

Большой и маленький тестер

Отсутствие правильных показателей на приборе, может свидетельствовать об употреблении разряженных батарей питания, недостатка активности пользователя и переводе тестера в режим «экономный», неправильном подключении щупов, выходе из строя плавкого предохранителя, а также установке переключателя в ошибочный режим. При необходимости следует выполнить подстройку выбора диапазона ручным способом.

Видео на тему

В сегодняшней статье я хочу рассказать Вам, как пользоваться мультиметром. Использовать мы будем цифровой мультиметр, поскольку он - намного проще в освоении своих аналоговых "коллег" и обеспечивает вполне сносное качество замеров.

Пользоваться мультиметром - просто! И сейчас Вы в этом убедитесь:)

Мультиметр также часто называют "мультитестером", потому что он предназначен для снятия довольно широкого спектра показателей: измерение постоянного и переменного напряжения, сопротивления и силы тока. Во многих мультиметрах также присутствует возможность измерения коэффициента усиления транзисторов и предусмотрен специальный режим для тестирования диодов, прозвонка цепи на короткое замыкание и т.д. Одним словом - "мульти " (для многого) "тестер ", в народе - напряжометр! :)

Дорогие модели подобных измерительных устройств включают в себя и дополнительные функции: замера температуры (с помощью щупа-термопары), индуктивности катушек, емкости конденсаторов.

Мы уже касались темы использования данного типа измерителя в статье, которая называлась: . Сейчас же - разберем все немного подробнее.

Учиться пользоваться мультиметром мы будем на примере бюджетного устройства китайского производства стоимостью в 10-15 долларов «XL830L », каким пользуюсь я.

Для полноты картины, посмотрите на аналоговый (стрелочный) мультиметр, который использует мой коллега:


Итак, кратко рассмотрим основные характеристики нашего цифрового мультитестера.

В комплект его поставки входит набор простеньких "щупов" (красный и черный провода на фото выше), при помощи которых и производятся измерения. Их, по необходимости, можно заменить на более качественные или - удобные.

Примечание : будьте готовы сразу же чем-то (скотчем, изолентой) зафиксировать места входа обеих проводов в полые пластмассовые трубки-держатели. Дело в том, что проводники в трубках жестко не зафиксированы и при поворотах и изгибах "щупа" могут запросто оторваться (в силу крайне хлипкого припоя) возле основания измерительного наконечника.


Перед тем, как начать пользоваться мультиметром по полной программе - посмотрим на наш цифровой тестер поближе:


В его верхней части мы видим семисегментное цифровое табло, которое может отображать до четырех цифр (9999 - максимальное значение). При разряде питающей батареи на нем появляется соответствующая надпись: «bat».

Под табло находятся две кнопки. Слева кнопка «Hold » - удержание показаний последнего значения (чтобы не держать в памяти при переписывании в блокнот). И справа - «Back Light » - подсветка экрана синим цветом (при замерах в условиях плохого освещения). С тыльной стороны на корпусе мультиметра имеется откидная ножка-подставка (для удобного размещения тестера на столе).

Питается цифровой мультиметр 9-ти вольтовой батарейкой типа «Крона». Правда чтобы добраться до нее нам придется снять резиновый защитный чехол и заднюю крышку тестера.


Внизу красным обведен наш элемент питания, а вверху - плавкий предохранитель, который (я надеюсь) защитит наш измеритель от выхода из строя в случае перегрузки.

Итак, перед тем, как начать пользоваться мультиметром надо правильно подсоединить к нему измерительные "щупы". Общий принцип здесь следующий:


Черный провод (его называют по разному: общий , com, common, масса) это - минус. Мы подсоединяем его к соответствующему гнезду мультитестера с подписью «COM ». Красный - в гнездо справа от него, это - наш "плюс ".

Оставшееся свободным гнездо слева - для измерения постоянного тока с пределом до 10-ти ампер (большие токи) и - без предохранителя, о чем свидетельствует предупреждающая надпись «unfused ». Так что будьте внимательны - не сожгите устройство!

Также обратите внимание на знак предупреждения (красный треугольник). Под ним написано: MAX 600V . Это - максимально допустимый предел измерений напряжения для данного мультиметра (600 Вольт).

Предупреждение! Запомните следующее правило: если измеряемые значения напряжения (Вольты) или силы тока (Амперы) заранее неизвестны, то для предотвращения выхода мультитестера из строя устанавливайте его переключатель на максимально возможный предел измерений. И только после этого (если показания слишком малы или - не точны) переключайте прибор на предел, ниже текущего.

Теперь, собственно, - как пользоваться мультиметром и как переключать эти самые "пределы"? :)

Работать с мультиметром надо с помощью кругового переключателя с указывающей стрелкой. По умолчанию она выставлена в положение «OFF » (прибор выключен). Стрелку мы можем вращать в любом направлении и таким образом "говорим" мультитестеру что именно хотим измерить или - с каким максимальным пределом будем работать.

Тут есть один очень важный момент! Работая с цифровым мультиметром, мы имеем возможность измерять значения как переменного , так и постоянного тока и напряжения. Сейчас в промышленности и быту в подавляющем большинстве используется переменный ток. Именно он "течет" по высоковольтным линиям проводов от генераторов электростанций в наши дома, "зажигает" наши лампы освещения и "питает" различные бытовые электроприборы.

Переменный ток, по сравнению с постоянным, намного легче преобразовывать (с помощью трансформаторов) в ток другого (нужного нам) напряжения. Например: 10 000 Вольт могут быть с легкостью превращены в 220 и совершенно спокойно направлены для нужд жилого дома. Переменный ток (по сравнению с постоянным) также намного проще "добывать" в промышленных масштабах и передавать его (с меньшими потерями) на большие расстояния.

Двигаемся дальше. Внутри системного блока всегда течет постоянный ток , так как преобразовывает переменный ток (подающегося в жилые дома с подстанции) в постоянный низкого напряжения (необходимый для питания комплектующих компьютера).

Пользоваться мультиметром надо, учитывая все сказанное выше. Поэтому, запомните наизусть следующие сокращения:

  • DCV = DC Voltage - (анг. Direct Current Voltage) - постоянное напряжение
  • ACV = AC Voltage - (анг. Alternating Current Voltage) - переменное напряжение
  • DCA - (анг. Direct Current Amperage) - сила тока постоянного напряжения (в амперах)
  • ACA - (анг. Alternating Current Amperage) - сила тока переменного напряжения (в амперах)

Теперь, - можем учиться пользоваться мультиметром дальше. Приглядитесь к циферблату своего измерителя и Вы обязательно увидите, что он делится строго на две части: одна для измерения постоянного и вторая - переменного напряжений.

Видите - две буквы «DC » в левом нижнем углу на фото выше? Это значит что левее (относительно положения «OFF») мы будем работать с мультиметром, измеряя постоянны е значения напряжения и силы тока. Соответственно правая часть мультитестера отвечает за измерения тока переменного .

Теперь предлагаю Вам сразу закрепить полученные знания на практике. Покажем пример использования мультиметра для замера емкости обычной батарейки для биоса «CR 2032» номиналом 3,3 Вольта.

Помните наше предупреждение красного цвета? :) Всегда выставлять предел выше, чем измеряемые значения. Мы знаем, что в батарейке - 3,3V и это - ток постоянный. Соответственно - выставляем на круговом переключателе "предел" измерений по шкале постоянного тока в 20 Вольт. Как показано на фото ниже.



Затем - берем наш гальванический элемент (батарейку) и прикладываем к ней измерительные "щупы" мультиметра. Точно так, как на фото ниже:


Обратите внимание на отмеченный красным знак «+» на батарейке. К этой ее стороне мы прикладываем "плюс" (красный щуп), а к обратной стороне - "землю" (черный).

Примечание : если перепутать полярность (к плюсу - минус, а к минусу - плюс) т.е. - поменять "щупы" местами - ничего страшного не произойдет, просто перед результатом на цифровом табло Вы увидите знак "минус". Сами значения измерений останутся верными.

Итак, мы воспользовались мультиметром и каков результат? Посмотрите (фото выше) на цифровое табло тестера. Там отображаются цифры «1.42 ». Значит в нашей батарейке сейчас 1.42 Вольта (вместо положенных трех). С размаху ее - в мусорное ведро! :) с такой батарейкой компьютер будет автоматически при каждом включении.

Для каких еще целей (с пользой для Отечества) мы можем пользоваться мультиметром? :) Вот, к примеру, мне недавно нужно было выяснить, как правильно к старой подключить внешний USB разъем, который оконцован вот такими вот четырьмя коннекторами:


Здесь «+5V» - питающее напряжение для устройства, подключаемого к разъему, «ground» - "земля" и два средних коннектора - кабели для передачи данных.

Прежде всего, находим на плате контакты (в данном случае - восемь штырьков) для подключения USB. Смотрим на фото ниже:


Каждая линия контактов это - один USB разъем на выходе. Всего - два. Для правильного подключения (дабы не сжечь втыкаемое в конечный разъем устройство) нам важно знать, на какой из "штырьков" подается напряжение? Остальные мы и методом "научного тыка" подобрать сможем, а вот если мы коннектор данных оденем на 5-ти Вольтовый "штырек" и подключим к такой связке флешку, то ей сразу настанет капец! :)

Поэтому пользоваться мультиметром надо четко представляя что и зачем мы делаем. Замеры тестером, естественно, производим при включенном компьютере. Нажимаем кнопку "пуск" и прикладываем черный "щуп" мультиметра к любому месту металлического (иначе мы просто не увидим результатов на экране). Затем, красным "щупом" начинаем последовательно прикасаться ко всем "ножкам" разъема на плате, следя за показаниями мультиметра на экране.

Внимание! касаться измерительным "щупом" штырьков нужно аккуратно, чтобы не закоротить одновременно два из них (так можно сжечь сам USB контроллер на плате).

Следуя такой схеме, мы выяснили, что пять Вольт находятся на двух крайних контактах (смотрите фото выше). Выключаем компьютер и начинаем постепенно заполнять наш разъем. Сначала одеваем контакты, имеющие маркировку «+5V», на обозначенные штырьки, два кабеля данных - сразу за ними и последним - коннектор с надписью «ground».

Визуально проверяем все ли в порядке и снова включаем . Берем флеш-накопитель и вставляем в один из двух USB портов, только что подключенных нами к материнской плате. Светодиод на "флешке" загорается (пошло питание), а после загрузки операционной системы мы видим, что и кабели данных мы подключили правильно, так как съемный диск успешно определяется системой!

Тем, кому вся эта техническая "лабудень" еще не надоела, предлагаю двигаться дальше:) Чтобы научиться пользоваться мультиметром и эффективно с ним работать, нам надо знать (запомнить, записать, вызубрить, вытатуировать) :) следующие обозначения, которые мы наверняка встретим на аналогичных измерителях, не зависимо от их модели.



Более совершенные образцы мультиметров показывают еще и емкость элементов - «F » (она измеряется в Фарадах) и индуктивность - «L » (вычисляется в Генри - "Гн").

Предлагаю Вам бегло "пройтись" по всему дисковому переключателю мультиметра и рассмотреть все его указатели и функции. Для удобства пользования сделаем так: откройте в новом окне и смотрите на картинку по мере прочтения текста, сверяясь с положениями переключателя.

Будем продвигаться слева-направо. Итак, в положении «OFF» мультиметр полностью выключен. Следующая позиция переключателя - 600 Вольт по шкале переменного тока. Она как нельзя лучше подходит для измерения напряжения в бытовой электросети (ток - переменный и значение шкалы - в несколько раз выше необходимого - 220-ти V.).

Проверим это утверждение на практике!

Внимание! Напряжения в 200 и 600 Вольт - опасны для жизни! Поэтому работая с ними, будьте предельно внимательны и осторожны!



Порядок "щупов" в розетке роли не играет.

Следующая позиция - 200 Вольт (вот на ней напряжение в розетке мерить не нужно - сгорит мультиметр! ). Правее у нас - цифра «200» со значком «µ » (микроампер - миллионная часть ампера). Подобные значения величин могут использоваться в разного рода электрических схемах.

Следующим на шкале - «2m» (два миллиампера - две тысячных Ампера). Показатель встречается преимущественно в транзисторах. Далее - «200m» - аналогично, но отсчет начинается с двухсот миллиампер. Следующее положение переключателя - «10A» (максимальная сила тока - десять Ампер). Это - территория больших токов, будьте внимательны! Здесь нам нужно будет красный "щуп" включить в специальное гнездо, обозначенное на фото как «10ADC ».

Можно успешно пользоваться мультиметром и для измерения значений «hFE» транзисторов различной проводимости (NPN и PNP транзисторов). Давайте один из них мы и проверим:


Как видите, три "ножки" элемента просто вставляются в соответствующие гнезда на мультиметре. Распространяться об этом типе измерения сейчас не будем (у нас все таки сайт на компьютерную тематику), но запомните на всякий случай:

  • B - база (base)
  • C - коллектор (collector)
  • E - эмиттер (emitter)

Значок акустической волны (прозвонка) линии на короткое замыкание. Какая нам от этого польза? Давайте разберем на примере.Я Вам, заодно, пару фотографий покажу интересных:)

Фотография первая - последняя стадия заключительной части финального этапа на одном из этажей у нас на работе! :)



Сто кабелей типа "витая пра", свисающие с кабельных каналов, закрепленных в пространстве подвесного потолка.



Представьте себе такую ситуацию (как оказалось - весьма реальную), что часть кабелей забыли подписать. Получается следующее: на другом крыле здания (у компьютерной розетки пользователя) мы не можем сказать, какому именно кабелю из ста принадлежит данное конкретное окончание и поиск «счастливого конца» автоматически превращается в отдельную задачу:)

Вот тут-то нам на выручку и придет режим использования мультитестера в качестве "звонилки" кабеля на короткое замыкание. Поскольку в самом названии заключена подсказка, то нам остается следующее - организовать это самое КЗ ().

В слаботочных сетях (к которым относятся компьютерные ЛВС) это - совсем не страшно:) На концах кабелей с обеих сторон снимаем защитное покрытие, выбираем один конкретный кабель (который мы хотим найти (прозвонить)) и также очищаем от изоляции любую пару его проводников. А затем - просто скручиваем их между собой, создавая в линии "петлю". Ей богу, это быстрее показать на фото, чем описывать словами:)


Теперь мы идем к нашей "лапше", свисающей с потолка, и переводим переключатель мультиметра в нужное нам положение:


Начинаем "прозванивать" каждый из неподписанных кабелей. Естественно - выбираем пары того же цвета , что и скрученные нами на другом конце линии! И я Вам гарантирую, что один из тестируемых кабелей отзовется на наши усилия характерным "писком", поскольку, таким образом, мы окончательно замкнули линию, а граница срабатывания звукового сигнала мультиметра это - 70 Ом. И если сопротивление между щупами меньше этого значения, то тестер издает специфический высокочастотный звуковой сигнал.


Порядок прикладывания "щупов" не важен. Конечно, это - такой "экспрес-метод", использования мультиметра, правильнее и надежнее было бы на удаленном конце кабеля установить резистор, а тестером с нашей стороны замерить сопротивление резистора через линию. Но, в условиях описанной выше ситуации, первый метод - более быстрый. Ну, и просто иногда - лень заморачиваться:)

Давайте отработаем элементарную процедуру: прозвоним кабель на обрыв. Исследовать будем три разных типа кабелей:

  • обжатый сетевой кабель (патчкорд)
  • VGA кабель к монитору
  • силовой кабель компьютера



Проверим нет ли обрыва в нашем патчкорде? Для этого прикладываем один щуп мультиметра к первой жиле в первом коннекторе, а второй - к той же жиле во втором. При этом, переводим сам измеритель в режим "прозвона".



Примечание : щупы должны быть достаточно тонкими, чтобы добраться до медных пластинок в коннекторе RJ-45.

Если мы все сделали правильно, то услышим характерный звуковой сигнал тестера, который свидетельствует о том, что проводник замкнут и обрыва нет. При обрыве, естественно, сигнала на будет. Так последовательно проверяем каждую пару проводников.

На очереди - VGA кабель передачи сигнала от видеокарты на монитор. Проверим и его! Для этого - прикладываем один щуп мультитестера к одному из штырьков в первом разъеме кабеля, а второй - к симметричному штырьку во втором разъеме.


Касаемся только самого штырька. Если приложим "щуп" к внутренней стороне корпуса разъема, то звуковой сигнал будет раздаваться независимо от того, какой из штырьков мы закоротим на другой стороне кабеля.

А сейчас - прозвоним на обрыв силовой кабель компьютера. Для этого один из "щупов" тестера (не важно какой) вставляем в разъем на одном его конце, а второй измерительный "щуп" прикладываем к одному из выводов электрической "вилки" кабеля.



Среднее отверстие это - "земля". Как и в предыдущих примерах, при одной из комбинаций мы должны услышать звуковой сигнал.

Примечание : все эти тесты можно также проводить в режиме замера сопротивления, но, как мы уже говорили, данный вариант - наиболее простой и экономный по времени. В большинстве случаев рекомендую выбирать именно его.

Пользоваться мультиметром можно и для определения значений сопротивления электрических компонентов. Входим в зону измерения сопротивления (англ. "resistance" или R, оно обозначается вот таким значком и измеряется в Омах). Первое значение на переключателе - «200 Ом». Можно, к примеру, измерить сопротивление резистора. Давайте сделаем это!

Берем резистор на 110 Ом и замеряем его сопротивление:


Далее - расположен переключатель с помощью которого можно "прозвонить" диод без выпаивания его из печатной платы. Мультиметр, в данном случае, будет вычислять значение сопротивления по падению напряжения компонента.

За ним идут позиции в «20k» (20 килоом или 20 тысяч Ом), «200k» (200 килоом - 200 тысяч Ом) и «2M» (два мегаома - 2 миллиона Ом).

Дальше - пороги измерения напряжения по шкале постоянного тока: «200m» (200 милливольт - 0,2 Вольта), «2», «20», «200» и «600» Вольт. Как мы уже поняли, если пользоваться мультиметром исключительно для ремонта компьютеров, то самым востребованным положением переключателя является положение в «20 » Вольт по шкале постоянного тока , так как максимальное напряжение, подающееся на все комплектующие составляет всего лишь 12 V.

Примечание: о том, как с помощью подобного тестера проверить некоторые элементы на материнской плате ПК, можете прочитать статье.

Давайте сделаем финальный рывок и я покажу Вам, как использовать мультиметр для проверки источника питания постоянного тока. У нас на работе часто стоит такая задача: перекинуть хвостовик (разъем) с одного такого блока питания на другой. Подразумевается именно БП от дешевых сетевых коммутаторов, и прочей электронной дребедени. Вот, к примеру, такой 12-ти вольтовый экземпляр, к которому нужно прикрутить другой разъем:

Для начала, берем сам кабель разъема и "прощупываем" его тестером в режиме прозвонки:



Обратите внимание, где находятся "щупы" прибора: один на оголенном конце кабеля, а второй - на внешнем металлическом обводе разъема. Как устроен коннектор? Один кабель идет к земле (этому самому обводу), а второй к штырьку, находящемуся внутри. Дело в том, что именно этот внешний обод и является "землей" (минусом или "массой") в аналогичных источниках питания.

Если мультиметр издал звуковой сигнал, значит мы нашли наш кабель, если нет, передвигаем черный щуп (при прозвонке их порядок не имеет значения) на другой провод. Определив, таким образом, кабель "земли" (можем пометить его, чтобы не забыть), аналогичным образом находим наш "плюс". Для этого один из щупов вставляем внутрь самого разъема (мы также должны услышать звуковой сигнал):


Итак, использование мультиметра помогло нам определить "плюс" и "минус" (землю) кабеля хвостовика. Теперь нам нужно разобраться с тем же моментом применимо к самому блоку питания. Вставляем его в розетку (не бойтесь, 12 вольт Вы вряд ли почувствуете), переводим наш прибор в режим измерения постоянного тока с пределом в 20 Вольт и приклыдываем щупы к проводам, идущим от БП.


Лирическое отступление: мы это делаем затем, что нам нужно определить полярность, т.е. на каком проводе у блока питания «+», а на каком «-». Как мы помним, при работе с источниками мы должны строго соблюдать полярность! Можете потренироваться на обычной батарейке:)

Итак, на фото выше на табло мультиметра мы видим знак минус. Что это значит? Запомните! Дисплей показывает полярность в месте подсоединения красного контакта. Отсутствие знака минус рассматривается как плюс! Исходя их этого, красный щуп мультиметра у нас прижат к "минусу" источника питания. Меняем щупы местами:



Видим, что на табло результат показывается без знака «-», а это значит что мы верно определили полярность («плюс» БП у нас на красном проводе). Не обращайте внимание на значение больше 12-ти вольт на табло прибора. Под нагрузкой оно "просядет" до своих законных 12-ти Вольт.

Теперь мы, зная полярность, можем правильно свить между собой два провода.


Подключаем все это дело к розетке и делаем тестовый замер на разъеме получившейся конструкции.



Примечание : иногда разъем слишком узкий и погрузить в него наконечник не получится. В таком случае используют распрямленную скрепку которую вставляют внутрь, а к ней уже прикладывают щуп.

Все нормально. Теперь можем смело между собой при помощи паяльника, изолировать их и подключать источник питания к нужному устройству.

Надеюсь, я не очень "занудил" в данной статье и Вы дотерпели ее до конца? Если так, то - поздравляю! Теперь Вы точно должны знать как пользоваться мультиметром! :)

Напоследок посмотрите видео о том, как происходит обжим сетевого кабеля витая пара. Как правильно расставить проводники в кабеле, мы с Вами разбирали в одном из наших курса.

Невзирая на многофункциональность и универсальность современных измерительных приборов, профессиональные инженеры осуществляют выбор мультиметра, исходя в первую очередь из тех физических величин, которые требуют как можно более точного измерения.

Профессиональный мультиметр – прибор, способный полностью удовлетворить потребность измерений в узкой специализированной сфере. Специалисты, читая технические характеристики, точно знают, на что им смотреть, чтобы выбрать лучший инструмент для себя, исходя из соотношения цена-качество.

Поэтому, данный обзор функциональных возможностей различных мультиметров предназначен для начинающих, чтобы они с одной стороны имели набор необходимых функций, с другой не переплачивали за ненужные возможности.

Принципы измерений

Существуют общие понятия, относительно того, как пользоваться мультиметром в процессе осуществления измерений, которые бывают:

Буквенное обозначение функциональности

Без привязки к конкретной физической величине нельзя дать ответ на вопрос как пользоваться мультиметром. Давно прошли времена, когда мультиметры измеряли только силу тока, напряжение, и сопротивление, поэтому одна инструкция подходила для всех устройств.


Обозначение на панели измерения разных величин

Современные мультиметры обладают множеством различных функций, которые группируются в одном приборе в зависимости от специализации, и описаны в соответствующих инструкциях от изготовителя. Для облегчения поиска нужного прибора, в каталогах для сокращения обозначения функциональности мультиметра применяют буквенные индексы, являющиеся заглавными буквами английских названий измеряемых физических параметров.

Наиболее распространённые:

  • T – (temperature), измеряет температуру;
  • F – (frequency) частотомер (для измерений частоты);
  • C – (condenser capacity) емкость конденсатора;
  • L – обозначение индуктивности, принятое в честь физика Эмилия Ленца (Lenz);
  • R – (resistance), сопротивление.

Таким образом, например, CRL мультиметром, можно измерить емкость, сопротивление, индуктивность. На корпусе типичного бюджетного мультиметра (для «чайников»), встречаются такие обозначения:


Некоторые обозначения измерении на корпусе мультиметра

Мультиметр в домашнем хозяйстве

Говоря о том, как пользоваться мультиметром в быту, необходимо представить себе житейские ситуации, когда это может понадобиться. Очень часто в домашнем хозяйстве необходимо проверить целостность электрической цепи (прозвонить проводку), или проверить её на наличие недопустимого короткого замыкания.

Для этих целей подойдёт бюджетный мультиметр, как на картинке. Красный щуп вставляют в разъем V,R,mA, чёрный в COM, переключают прибор в режим «прозвонки», обозначенный диодом или звуковым динамиком. После этого замыкают два щупа, проверяя работоспособность — должен прозвучать сигнал.


Работа с мультиметром в разрыв цепи и когда цепь замкнута

Допустим, необходимо прозвонить интернет кабель. Сначала нужно два разъема поставить рядом. Прикасаясь щупами к клеммам, подключенным к проводам одинакового цвета, добиваются появления сигнала. Если сигнала нет – значит, где-то обрыв (нет контакта).


«Прозвонка» интернет кабеля

Цифровой дисплей при проверке кабеля показывает сопротивление, то есть, если переключате льмультиметра не имеет диода или динамика, то проверить кабель можно с помощью омметра, даже пользуясь стрелочным мультиметром. Режим прозвонки – единственная измерительная функция, которую можно осуществлять, используя стрелочный прибор, не разбираясь при этом в градуировке шкалы и измеряемых величинах.

Чтобы проверить качество электричества в розетке, нужно переключиться в режим V~ 750, вставить щупы и понаблюдать за изменяющимся напряжением в течении некоторого времени.

Также в данном режиме измерений можно определить фазу. Для этого один щуп заземляют (подключают к корпусу щитка или к заземлению), а другим проверяют провода или клеммы контактов. Появившиеся 220В (или около того) на дисплее будут указывать, что проверяемый провод – фаза.


Определение мультиметром фазы

Часто в паспорте бытовых устройств указывают номинальный ток. Чтобы измерить ток, протекающий в цепи,мультиметр необходимо включить в ее разрыв. Для этого выставляют переключатель мультиметра в максимальное значение диапазона А~ (переменный ток, 20 А).

Щупы необходимо подключить в соответствующие разъемы

Для безопасного подключения оголённых проводников использована лампочка 12В с питанием от трансформатора.


Подключение лампочки 12 В через трансформатор

Под сетевым напряжением, подобным способом, мерить ток нельзя из-за опасности поражения. Но, можно соорудить испытательный стенд, безопасно вставляя щупы в одну розетку и подключая нагрузку к другой.


Испытательный стенд

Проверять резисторы или другие радиоэлектронные нужно в режиме омметра, переключая соответствующие диапазоны, таким же образом, как делалась прозвонка.

Измеряя килоомы и мегаомы, необходимо избегать касания пальцами выводов деталей – человеческое тело обладает сопротивлением, которое будет влиять на точность измерений.

Так мерить нельзя! Так мерить можно!

Свойства элементов

Чтобы пользоваться мультиметром, также необходимо понимать также свойства проверяемых элементов. Например, вопреки бытующему мнению, с помощью мультиметра нельзя проверить заряд батареи при помощи одного измерения напряжения – батарейка или аккумулятор автомобиля будет показывать значение, близкое к номинальному, за исключением полностью посаженных элементов питания.


Схема измерения напряжения, тока и сопротивления

Данные источники тока имеют свойство восстанавливать напряжение, благодаря химическим процессам, происходящим внутри, но при выполнении работы у подсевшего аккумулятора напряжение падает. Но, можно сделать измерение силы тока (сквозное подключение мультиметра, или при помощи шунтов), протекающего в подключенной к клеммам аккумулятора нагрузке, подобрав соответствующее сопротивление нагрузки, и потом перейти и переключиться в режим напряжения, таким способом вычисляя выдаваемую мощность источника питания.

Наблюдая за динамикой падения напряжения, можно судить о том, насколько аккумулятор разряжен. Чтобы объяснить, как проверить конденсатор мультиметром, нужно понимать свойство активного емкостного сопротивления, уменьшающегося по мере увеличения емкости при переменном токе.

Советские стрелочные мультиметры серии Ц подключали к розетке для получения опорной частоты и с помощью дополнительной клеммы измеряли емкость конденсаторов. Современные мультиметры имеют свой встроенный генератор для подобных измерений, которые производят, подключая щупы к электродам конденсатора.


Измерение емкости конденсатора

У цифровых мультиметров есть внутренняя электронная защита, предотвращающая неправильное использование прибора, а также встроенный плавкий предохранитель, Автоматическое выключение питания способствует экономному расходованию заряда батареи.

Осуществляя выбор мультиметра, обязательно нужно проверить, как он работает, если батарея частично посажена – дешёвые китайские модели в этом случае дают очень большую погрешность измерений.

Обязательно нужно соблюдать безопасность, и следить за состоянием измерительных щупов и изоляции проводов – очень часто они отрываются от щупов, и при измерениях могут нанести электрическую травму.

Этот маленький, но очень способный прибор есть у каждого любителя электроники, поэтому, как пользоваться тестером, мы расскажем как раз на основании опыта одного из наших друзей. Но сначала разберемся, что это такое, и какие же параметры мы сможем анализировать, имея данный инструмент.

Мультиметр и кабель-тестер – в чем разница?

Тестер – довольно всеобъемлющее понятие, в него входит как привычный мультиметр, так и кабельный тестер, который проверяет целостность провода по всей длине и даже может указать место обрыва цепи. Мультиметр, как понятно из его названия, умеет многое. В его основные функции входит определение напряжения, сопротивления и силы тока, что соответствует отдельным приборам вольтметру, омметру и амперметру. Может быть переносным и стационарным, а шкала у него может быть аналоговой либо в виде цифрового дисплея.

Кабель-тестер также различается по своему назначению. Существует измеритель состояния оптических кабелей и витой пары (сетевых). Ко второму виду относится также измеритель телефонного и коаксиального кабеля. На выходе мы можем получить следующие параметры: длину провода, схему разводки, степень наводки и затухание, сопротивление и потери. По классам приборы делятся, исходя из их достоверности. Существуют базовые (читай бытовые, для простой проверки), с квалифицированной степенью проверки и сертификационным уровнем.

Они отличаются не только точностью и достоверностью, но и функциями. Например, сертификационный тестер имеет возможность провести диагностику и найти причины в том случае, если ваша проводка тест не прошла, то есть неисправна.


Кабельный тестер и мультиметр – особенности измерений

Прежде чем использовать тестер напряжения или кабельный, следует знать, чего же нам ждать, когда подключим прибор. Также важно помнить, как правильно им пользоваться. Иначе мы можем не только получить неверные результаты или вовсе их не увидеть, но и учинить пожар или неприятно пахнущее оплавление изоляции проводов. Для мультиметра важно обстоятельство, что он измеряет то, что чувствует лично он, то есть «измеряет себя». А значит, нужно пропустить все интересующие нас параметры в полной мере через прибор.

Как в тех или иных случаях следует его подключать в цепь, нам расскажут законы физики школьного уровня, но об этом мы упомянем ниже. Тестер для кабелей не капризен в плане подключения, так как разъем у него обычно перепутать невозможно. Для работы с ним следует лишь понять, как распознать те или иные сигналы, но об этом лучше читать в каждом конкретном руководстве к прибору, собственно как и про сигналы, которые показывает его дисплей. Перед работой следует всего лишь выяснить, в каком диапазоне скоростей должен работать кабель, а потом замерить, соответствует ли реальное значение ожидаемому.

Если значение не соответствует, то нужна диагностика сертифицирующим тестером, важно провести ее в режиме NEXT (наводка на конце кабеля) и Return Loss (потери при возврате). Тогда можно определить, что не в порядке – сам кабель или его разъемы.


Как пользоваться тестером для различных измерений?

Независимо от того, какой у вас тестер, электрический или аналоговый, следует знать общий подход к измерению самых распространенных параметров.

Постоянное и переменное напряжение

Чтобы измерить данный параметр, нужно переключить тестер в режим вольтметра, для этого найдите обозначения DCV (V) и ACV (V~), обозначают эти буквы соответственно постоянное и переменное напряжение. Согласно физическим законам, значение напряжения следует снимать при параллельно подключенном приборе, только так на нем будет разность потенциалов, как и в основной цепи.

Во всем этом процессе есть несколько особенностей. Например, ваши показания будут не точны, если сопротивление измеряемого участка цепи будет порядка 1 МОм, потому что собственное сопротивление тестера в таком режиме очень велико, и он будет давать заниженный результат. Таким образом, для достоверности результатов нужно соблюдать условие, чтобы ток источника был намного больше, чем отношение U/R, где U – искомое напряжение, а R – собственное сопротивление измерительного прибора.

Но и это еще не все, при измерении ACV прибор делает его выпрямление с помощью диодов, но и они имеют свою разность потенциалов, что дает погрешность при измерении переменного напряжения в районе 1-3 Вольт, значение просто будет занижено. Точно также прибор будет привирать в случае измерения падения напряжения большой частоты, причем порог не так и высок, значения станут отличаться от реальных уже в районе пары сотен кГц.

Постоянный ток

Опять возвращаемся к школьной физике, чтобы через прибор прошло такое же количество зарядов, как и через анализируемую цепь, он должен быть подключен последовательно, то есть вклинен в нее (в разрыв цепи). Режим называется DCA, а для высоких значений есть функции 10А и 20А. Правда, не забудьте заменить штатные провода на усиленные для этих режимов, потому что стандартные не держат такие нагрузки и оплавляются, а то и горят, потому что рассчитаны максимум на 5 Ампер.

А вот переменный ток напрямую измерить не получится, можно только извратиться, подключив в цепь резистор с крайне малым сопротивлением. Ток измеряется уже на этом элементе цепи, а потом искомое значение тока находится по формуле U/R, только вот погрешность такого измерения довольно большая, и то метод работает в случае крайностей – либо очень высокий ток, либо очень низкий.

Сопротивление

Измеряется эта величина на резисторе при отключенной цепи, то есть ток идти не должен. Режим омметра в тестере включается через обозначение буквой «Омега» (подкова). Если вы все же не перекроете ток в цепи, то получите значение, которое даже для расчетов использовать будет нельзя, так как против сопротивления резистора будет играть сопротивление оставшейся части цепи, которое, кстати, неизвестно. А вот дифференциальное сопротивление некоторых элементов (нелинейных) получить с помощью тестера тоже нельзя, только косвенно, причем придется не только считать, а даже строить графики U=f(I), предварительно изменив анализируемую цепь.

Прозвон диодов

Режим включается соответствующим значком, который изображает диод. Нельзя пользоваться при включенном токе. Берем красный провод и подносим к одному концу, а потом ко второму. Тот, от которого будет показано цифровое значение, и является анодом. Если на экране знак бесконечности, то вы наткнулись на катод.

Распиновка транзисторов

Тестер работает в режиме прозвона диодов, красный провод крепим к одному из концов резистора, вторым проводом (черным) проверяем контакты (оба). Если дисплей выдаст нам два числа, то это n-p-n транзистор. Цифры будут почти одинаковы, но запомните их, а лучше отметьте, в каком случае значение было меньше. Теперь можно определить базу, эмиттер и коллектор: в качестве первого объекта выступает контакт, за который у нас держится красный провод, второй – тот, для которого цифра была больше, а последний – для которого цифра была меньше.

Если прием с красным стационарным проводом не дал нам значений, то красный провод отсоединяем и стационарно крепим черный провод, а красным проверяем контакты в поисках цифр на экране. Так подбираем комбинацию с адекватным поведением. Если с черным проводом повезло, то транзистор является типом p-n-p, а эмиттер и коллектор вычисляют по той же закономерности.

Емкость и индуктивность

В некоторых моделях тестеров могут быть функции измерения численного значения этих параметров, и обозначаются режимы C (емкость) и L (индуктивность). Подключаются как омметр. Если специальных режимов нет, то наличие (работоспособность) этих характеристик можно установить с помощью режима омметра, но вот численное выражение вы не получите. Как это определить: сопротивление исправной катушки должно стремиться к нулю и выражаться каким-нибудь малым конечным числом, а конденсатор – наоборот, его сопротивление должно быть очень большим, вплоть до бесконечности. Подключая электролитический конденсатор к тестеру, соблюдайте полярность (красный – к плюсу, черный – к минусу), и не вздумайте схватиться за выводы руками.