Гидравлический тормозной привод. Тормозной узел Узлы тормозной системы

Тормозной узел

Тормозной механизм переднего колеса:

1. тормозной диск;

3. суппорт;

4. тормозные колодки;

5. цилиндр;

6. поршень;

7. сигнализатор износа колодок;

8. уплотнительное кольцо;

9. защитный чехол направляющего пальца;

11. защитный кожух.

Тормозной механизм переднего колеса дисковой, с автоматической регулировкой зазора между колодками и диском, с плавающей скобой и сигнализатором износа тормозных колодок. Скоба образуется суппортом 3 и колесными цилиндрами 5, которые стянуты болтами. Подвижная скоба крепится болтами к пальцам 10, которые установлены в отверстиях направляющей 2 колодок. В эти отверстия закладываются смазка, между пальцами и направляющей колодок установлены резиновые чехлы 9. К пазам направляющей поджаты пружинами тормозные колодки 4, из которых внутренняя имеет сигнализатор 7 износа накладок.

В полости цилиндра 5 установлен поршень 6 с уплотнительным кольцом 8. За счет упругости этого кольца поддерживается оптимальный зазор между колодками и диском.

К тормозным механизмам предъявляют следующие требования:

· эффективность действия;

· стабильность эффективности торможения при изменение скорости, числа торможений, температуры трущихся поверхностей;

· высокий механический КПД;

· плавность действия;

· автоматическое восстановление номинального зазора между трущимися поверхностями;

· высокая долговечность.

Преимущество дисковых тормозных механизмов:

· меньше зазоры между дисками и колодками в незаторможенном состояние, а следовательно, выше быстродействие;

· выше стабильность при эксплуатационных коэффициента трения фрикционной пары;

· меньше масса и габаритные размеры;

· равномернее изнашивание фрикционных колодок;

· лучше условия теплоотвода.

К недостаткам дисковых тормозных механизмов относятся:

· трудность обеспечения герметизации;

· повышенная интенсивность изнашивания фрикционных колодок.

Диск переднего тормоза

Описание детали

В качестве задания был выдан чертеж детали 2110-3501070-77 “Диск переднего тормоза”. Деталь выполнена из чугун GH 190. Тип производства массовый. Деталь представляет из себя сочетание цилиндрических поверхностей: 2 наружных O137 +0,5 мм и O239,1±0,3 мм и 3 внутренних O58,45 мм, O127 мм, O154 max.

На внешней торцевой цилиндрической поверхности 137 +0,5 расположены 4 крепежных отверстия 13±0.2 мм и 2 крепежных отверстия 8,6±0.2 мм. Внутри цилиндрической поверхности 239.1±0,3 расположены 30 ребер жесткости, толщиной 5 +1 мм и расположенных по отношению друг к другу под углом 12 0 на расстояние 47 мм от общей оси диска. Ребра жесткости не одинаковы по длине: они чередуются находясь на расстояние 83.5 и 77 мм от общей оси диска.

Технические требования

Точность размеров

Степень точности размеров не велика. Большая часть размеров выполнена в пределах 12-14 квалитетов. Наиболее точные размеры выполнены по 10 квалитету: 58.45.

Точность формы

Точность формы определяется следующими условиями:

1. Допуск плоскостности равный 0.05: отклонение торцевых поверхностей 1 и 9 не более чем на 0.05 мм.

Точность взаимного расположения

Точность взаимного расположения регламентируются следующими допусками:

2. Допуск параллельности равный 0.05: отклонение от параллельности торцевой поверхности 3 относительно торцевой поверхности 11 не более чем на 0.05 мм.

3. Допуск параллельности равный 0,04: отклонение от параллельности торцевой поверхности 1 относительно торцевой поверхности 9 не более чем на 0,04 мм.

4. Зависимый позиционный допуск равный 0.2 мм на диаметр: отклонение положения оси цилиндрических поверхностей 13±0,2 и 8,6±0,2 относительно оси цилиндрической поверхности 58,45 не более чем 0,2мм;

5. Допуск соосности равный 0,35 на диаметр: несовпадение оси цилиндрической поверхности 239,1±0,3 мм с осью цилиндрической поверхности 58,45 мм не более чем 0,35 мм.

Суммарные допуски формы и взаимного расположения

· Торцевое биение равное 0,05: расстояние от точек реального профиля торцевой поверхности 9 до плоскости, перпендикулярной базовой поверхности 11 не более 0,05 мм.

Шероховатость поверхности

Наименьшей шероховатостью обладает торцевые поверхности 1 и 9 Ra1,6 с круговым и радиальным типами направления микронеровностей. Остальные показатели шероховатости находятся в пределах Rz 20- Rz 80.

Гидравлический тормозной привод автомобилей является гидростатическим, т. е. таким, в котором передача энергии осуществляется давлением жидкости. Принцип действия гидростатического привода основан на свойстве несжимаемости жидкости, находящейся в покое, передавать создаваемое в любой точке давление во все другие точки при замкнутом объеме.


Принципиальная схема рабочей тормозной системы автомобиля :
1 - тормозной диск;
2 - скоба тормозного механизма передних колес;
3 - передний контур;
4 - главный тормозной цилиндр;
5 - бачок с датчиком аварийного падения уровня тормозной жидкости;
6 - вакуумный усилитель;
7 - толкатель;
8 - педаль тормоза;
9 - выключатель света торможения;
10 - тормозные колодки задних колес;
11 - тормозной цилиндр задних колес;
12 - задний контур;
13 - кожух полуоси заднего моста;
14 - нагрузочная пружина;
15 - регулятор давления;
16 - задние тросы;
17 - уравнитель;
18 - передний (центральный) трос;
19 - рычаг стояночного тормоза;
20 - сигнализатор аварийного падения уровня тормозной жидкости;
21 - выключатель сигнализатора стояночного тормоза;
22 - тормозная колодка передних колес

Принципиальная схема гидропривода тормозов показана на рисунке. Привод состоит из главного тормозного цилиндра, поршень которого связан с тормозной педалью, колесных цилиндров тормозных механизмов передних и задних колес, трубопроводов и шлангов, соединяющих все цилиндры, педали управления и усилителя приводного усилия.
Трубопроводы, внутренние полости главного тормозного и всех колесных цилиндров заполнены тормозной жидкостью. Показанные на рисунке регулятор тормозных сил и модулятор антиблокировочной системы , при их установке на автомобиле, также входят в состав гидропривода.
При нажатии педали поршень главного тормозного цилиндра вытесняет жидкость в трубопроводы и колесные цилиндры. В колесных цилиндрах тормозная жидкость заставляет переместиться все поршни, вследствие чего колодки тормозных механизмов прижимаются к барабанам (или дискам). Когда зазоры между колодками и барабанами (дисками) будут выбраны, вытеснение жидкости из главного тормозного цилиндра в колесные станет невозможным. При дальнейшем увеличении силы нажатия на педаль в приводе увеличивается давление жидкости и начинается одновременное торможение всех колес.
Чем большая сила приложена к педали, тем выше давление, создаваемое поршнем главного тормозного цилиндра на жидкость и тем большая сила воздействует через каждый поршень колесного цилиндра на колодку тормозного механизма. Таким образом, одновременное срабатывание всех тормозов и постоянное соотношение между силой на тормозной педали и приводными силами тормозов обеспечиваются самим принципом работы гидропривода. У современных приводов давление жидкости при экстренном торможении может достигать 10–15 МПа.
При отпускании тормозной педали она под действием возвратной пружины перемещается в исходное положение. В исходное положение своей пружиной возвращается также поршень главного тормозного цилиндра, стяжные пружины механизмов отводят колодки от барабанов (дисков). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр.
Преимуществами гидравлического привода являются быстрота срабатывания (вследствие несжимаемости жидкости и большой жесткости трубопроводов), высокий КПД, т. к. потери энергии связаны в основном с перемещением маловязкой жидкости из одного объема в другой, простота конструкции, небольшие масса и размеры вследствие большого приводного давления, удобство компоновки аппаратов привода и трубопроводов; возможность получения желаемого распределения тормозных усилий между осями автомобиля за счет различных диаметров поршней колесных цилиндров.
Недостатками гидропривода являются : потребность в специальной тормозной жидкости с высокой температурой кипения и низкой температурой загустевания; возможность выхода из строя при разгерметизации вследствие утечки жидкости при повреждении, или выхода из строя при попадании в привод воздуха (образование паровых пробок); значительное снижение КПД при низких температурах (ниже минус 30 °С); трудность использования на автопоездах для непосредственного управления тормозами прицепа.
Для использования в гидроприводах выпускаются специальные жидкости, называемые тормозными . Тормозные жидкости изготавливают на разных основах, например спиртовой, гликолевой или масляной. Их нельзя смешивать между собой из-за ухудшения свойств и образования хлопьев. Во избежание разрушения резиновых деталей тормозные жидкости, полученные из нефтепродуктов, допускается применять только в гидроприводах, в которых уплотнения и шланги выполнены из маслостойкой резины.
При использовании гидропривода он всегда выполняется двухконтурным, причем работоспособность одного контура не зависит от состояния второго. При такой схеме при единичной неисправности выходит из строя не весь привод, а лишь неисправный контур. Исправный контур играет роль запасной тормозной системы, с помощью которой автомобиль останавливается.


Способы разделения тормозного привода на два (1 и 2) независимых контура

Четыре тормозных механизма и их колесные цилиндры могут быть разнесены на два независимых контура различными способами, как показано на рисунке.
На схеме (рис. 5а) в один контур объединены первая секция главного цилиндра и колесные цилиндры передних тормозов. Второй контур образован второй секцией и цилиндрами задних тормозов. Такая схема с осевым разделением контуров применяется, например, на автомобилях УАЗ-3160, ГАЗ-3307. Более эффективной считается диагональная схема разделения контуров (рис. б), при которой в один контур объединяют колесные цилиндры правого переднего и левого заднего тормозов, а во второй контур - колесные цилиндры двух других тормозных механизмов (ВАЗ-2112). При такой схеме в случае неисправности всегда можно затормозить одно переднее и одно заднее колесо.
В остальных схемах, представленных на рис. 6.15, после отказа сохраняют работоспособность три или все четыре тормозных механизма, что еще больше повышает эффективность запасной системы. Так, гидропривод тормозов автомобиля Москвич-21412 (рис. в) выполнен с использованием двухпоршневого суппорта дискового механизма на передних колесах с большим и малым поршнями. Как видно из схемы, при отказе одного из контуров исправный контур запасной системы действует либо только на большие поршни суппорта переднего тормоза, либо на задние цилиндры и малые поршни переднего тормоза.
В схеме (рис. г) исправным всегда остается один из контуров, объединяющий колесные цилиндры двух передних тормозов и одного заднего (автомобиль Volvo). Наконец, на рис. 6.15д показана схема с полным дублированием (ЗИЛ-41045), в которой любой из контуров осуществляет торможение всех колес. В любой схеме обязательным является наличие двух независимых главных тормозных цилиндров. Конструктивно чаще всего это бывает сдвоенный главный цилиндр тандемного типа, с последовательно расположенными независимыми цилиндрами в одном корпусе и приводом от педали одним штоком. Но на некоторых автомобилях применяют два обычных главных цилиндра, установленных параллельно с приводом от педали через уравнительный рычаг и два штока.

    Тормозные системы для спуска пострадавшего подручными средствами - При спасработах подручными средствами ресурсы снаряжения чаще всего ограничены. Поэтому очень важно умение использовать минимальное количество снаряжения с максимальной эффективностью. Подручные спусковые (тормозные) системы должны отвечать… … Энциклопедия туриста

    ГОСТ Р 55057-2012: Транспорт железнодорожный. Состав подвижной. Термины и определения - Терминология ГОСТ Р 55057 2012: Транспорт железнодорожный. Состав подвижной. Термины и определения оригинал документа: 22 аварийная крэш система: Устройство железнодорожного подвижного состава, предназначенное для предотвращения или снижения… …

    элемент - 02.01.14 элемент (знак символа или символ) : Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… … Словарь-справочник терминов нормативно-технической документации

    Индевор STS-134 - п· Полётные данные корабля Название корабля STS 134 Орбитальный модуль «Индевор» Полёт шаттла № … Википедия

    STS-134 - Эмблема Полётные данные корабля … Википедия

    кран - 3.2 кран: Водоразборное устройство, обеспечивающее получение воды из системы водоснабжения и регулирование расхода воды потребителем. Источник: ГОСТ 19681 94: Арматура санитарно техническая водоразборная. Общие технические условияСловарь-справочник терминов нормативно-технической документации

    ВВГБТАТНВЦ-АЯ - HEt BHiH С И С ГОД 4 U ВЕГЕТАТИВНАЯ НЕГПНАН CIH TFMA III й*гл*. 4411^1. Jinn РИ"И рягцхш^чпт* dj ^LbH рисунок, и будет работать в другую сторону».

    Практически постоянно применяя узел УИАА при работах промышленном альпинизме, я пришёл к следующим выводам:

    1. Узел очень удобен при использовании в качестве «тормозного устройства» при спуске по вертикальным перилам.

    2. Узел действительно портит оплётку верёвки, но гораздо меньше, чем другие тормозные устройства.

    3. Узел можно применять и на жёсткой верёвке.

    4. Действительно, главное - правильно заложить в карабин витки узла. Основная нагрузка в узле приходится на первый виток, чтобы узел нормально работал, этот виток должен находиться точно в перегибе карабина. Поэтому утверждение, что «при перемене направления движения верёвки, узел перевернётся на кара­бине, сохранив рисунок, и будет работать в другую сторону» - неверно.

    «Три щелчка»

    (карабин в сочетании с тормозным узлом «три щелчка»)

    Узел Гарда

    (петля Гарда)

    Узе т Гарда - прекрасное средство для страховки. Практически незаменим при вертикальной транспортировке пострадавшего. Легко вяжется. Надёжен при любом состоянии верёвки.

    Рис. 79 а, б, в, г.

    Узел удобен при поднятии какого-либо груза, в т-ом случае, когда необходимо при лёгком выборе верёзки быстро блокиро­вать её проскальзывание в обратном направлении. Иногда приме­ним при натягивании навесной переправы вместо схватывающего (удерживающего) узла.

    В незатягивающуюся петлю закреплённой веревки встёги-ваются два одинаковых карабина муфтами в одну сторону В оба карабина продевается верёвка, которой осуществляется страховка пострадавшего или какого-то груза. Далее коренным концом че-сез два карабина делается один шлаг, а второй шлаг делается только через один карабин таким образом, чтобы выбираемый ко­нец верёвки проходил между карабинами.

    Карабинный тормоз

    (карабинный крест)

    Карабинный тормоз - система из карабинов и верёвок, пред­назначенная, в основном, для спасательных работ, когда необходимо обеспечить травление нагруженных верёвок силами одного -двух человек.

    Устройство карабкнного тормоза следующее: используется два карабина, один - как рама тормозного устройства, а другой -как подвижная поперечина. Поперечина служит для создания сильного трения. Трение, как известно, зависит от площади тру­щихся поверхностей и давления на эти поверхности. За счёт под­вижной поперечины можно регулировать давление карабина на верёвку, т.е. регулировать величину трения.

    На петле страховки крепится карабин. Он осуществляет роль направляющего. Используется для удобства, можно при необхо­димости обойтись и без него. В этот карабин встёгивается второй карабин и замуфтовывается. Этот карабин выполняет функцию рамы тормозного устройства, Сквозь него продевается петля ве­рёвки, которой будет осуществляться страховка. В образовавшую­ся петлю встёгивается третий карабин, он же застёгивается и на конце верёвки, предназначенном под нагрузку. Третий карабин играет роль поперечины. Карабинный тормоз собран. Нужно замуфтовать все карабины. У карабина, выполняющего роль под­вижной поперечины, муфта должна быть с обратной стороны вто­рого карабина. Верёвка при движении не должна касаться этой муфты.

    В экстремальной ситуации карабин, выполняющий роль по­перечины, можно заменить скальным молотком или ледорубом (см. рис. 81).

    Здесь необходимо сделать небольшое отступление. Многих туристов не удовлетворяли возможности альпинистских караби-1 нов и применение тормозных узлов. В связи с этим было сделано сразу несколько изобретений. Были придуманы различные тормозные приспособления. Изобретатели исходили из следующих соображений. Степень торможения зависит от трения, развивае­мого в местах опоры верёвки (троса) и в тормозных приспособле­ниях, а также от усилия туриста удерживающего («протравли­вающего») ненагруженный свободный конец верёвки.

    Рис, 81 а, б.

    Были придуманы различные способы торможения верёвки и тормозные приспособления (устройства) различной конструктив­ной сложности.

    На рис. 82. показаны наиболее простые способы торможения верёвки:

    А - через скальный выступ (а), с петлёй и карабином (б);

    Б - через карабин, навешанный на одиночный крюк (а) и крюк с петлёй (б);

    В - через ледоруб.

    Рис. 82 А, Б, В.

    На рис. 83. показаны: спуск по верёвке

    а - спортивным способом (на склонах средней крутизны);

    б - на крутых склонах;

    в - с торможением, способом Дюльфера (через бедро).

    В зависимости от того, как на теле человека намотана (уложена) верёвка, будет соответствующим и торможение.

    Рис. 83 а, б

    Торможение верёвки, в котором принимают участие только корпус человека и руки, применяется при страховке через плечо и поясницу; иногда в качестве дополнительной страховки при спус­ке спортивным («сванским») способом и классическим «дюльфе-ром». Торможение верёвки через корпус и руки в сочетании с тормозными приспособлениями используется при динамической страховке и различных способах спуска по верёвке.

    Применение тормозных приспособлений дало туристам воз­можность регулировать скорость спуска по верёвке.

    Д. Тормозные приспособление (устройства)

    Сначала были придуманы тормозные приспособления без возможности блокировки верёвки: шайба Штихта,

    «лягушка» и «восьмёрка» (без кнехта).

    При необходимости зафиксировать неподвижное положет на верёвке, туристам приходилось применять специальные уз; что не всегда было надёжным, удобным и безопасным. Поэтому практически сразу же были придуманы тормозные приспособления блокирующие верёвку: «лепесток» («солдатик»), бугель Мунтера,

    Рис. 85 (а) Рис. 86 (б).

    «букашки» Кашевника «восьмёрка» (с кнехтом).

    Тормозное приспособление, не блокирующее верёвку, типа «восьмёрка».

    Верёвкой образуют петлю, которая продевается в большое кольцо «восьмёрки» и встёгивается в карабин или набрасывается на шейку «восьмёрки». Для увеличения трения верёвку дополни­тельно перегибают через кнехт. Для того, чтобы зафиксироваться на верёвге неподвижно, нужно верёвку сначала намотать на кнехт, а затем, сделав петлю и продев её в большое кольцо «восьмёрки», также накинуть на кнехт. Применение тормозных приспособлений блокирующих верёвку повышает безопасность спусков и потому предпочтительнее.

    Третью группу тормозных приспособлений составляют автоматически блокирующиеся фрикционные устройства. Это устрой­ства Петцла, Серафимова и подобные им.

    Рис. 89. Рис. 90

    Е . Захваты (зажимы)

    Схватывающим узлам также была найдена замена. Стали применяться захваты различных конструкций, т.е. приспособле­ния и устройства, предназначенные для крепления к верёвке (тро­су) обвязки страховочной туриста, груза, а также для передачи усилия. Захваты свободно скользят без нагрузки и автоматически фиксируют своё положение на верёвке (тросе) при её приложении или рывке. Применяются с целью создания точек опоры при дви­жении по крутым или отвесным склонам, осуществлении самостраховки, организации страховки, при транспортировочных спасательных работах. В качестве захватов используют различные приспособления. Клемма Салева (см. рис. 69 (в)).

    Зажимы одностороннего действия без ручки.

    Зажимы одностороннего действия без ручки (зажим Горенмука): а - открытое положение для закладки верёвки; б - рабочее положение фиксации.

    Рис. 92 а, б.

    Захваты с ручкой - для удобства передвижения (Жумар).

    Зажимы двухстороннего действия, допускающие свободное перемещение вдоль верёвки в обоих направлениях.

    Блок-тормозы эксцентриковой, клиновой и рычажной систем.

    Рис. 95 а, б.

    Для закрепления на тросе применяют тросовые и униве сальные эксцентриковые зажимы.

    Рис. 96 а, б.

    В 80-х годах разработаны и начали использоваться захваты, конструктивно объединённые с фрикционными тормозными уст­ройствами в единое спускоподъемное устройство.

    На первый взгляд может показаться, что всё изложенное выше в этом разделе к узлам прямого отношения не имеет. Но да­вайте обратимся к толковому словарю В.Даля, что означает слово «узел»? Читаем: «Узелъ - перевой гибких концовъ и затяжка ихъ, завязка. Узлы вяжутся различным перевоем». «Перевой - переви­вать (переплести или обвить, пере(об)мотать». Применяя тормоз­ные приспособления и захваты, мы наматываем верёвку на что-либо или обвиваем ей что-либо, или укладываем её определённым образом. Верёвка в сочетании с приспособлениями образует узел (сравните с термином «узел» в машиностроении). Все узлы (обви-тия), применяемые с тормозными приспособлениями и с захвата­ми относятся к классу специальных, и поэтому рассматриваются в этом разделе.

    Схема закрепления верёвки в тормозном приспособлении типа «рамка» («бабочка»)

    Все рассмотренные здесь тормозные устройства имеют са­мые различные модификации. Например, «восьмёрки» бывают различного размера, с кнехтами и без кнехтов, с двойным кнех­том. «Лепестки» есть правые и левые. Кстати, «лепестки» изго­товленные из алюминиевых сплавов очень непрочны, а поэтому опасны в применении. Я одобряю действия своего знакомого ту­риста, который выйдя первый же день на работу в один из турклу-бов, молотком переломал целый ящик алюминиевых «лепестков», чем спас множество жизней молодых туристов, а своего началь­ника от неприятностей. Знаю от туристов, что в г. Краснодаре од­но время кто-то изготовил партию титановых «лепесткоЕ» - вот они отвечают требованиям прочности.

    «Рамки», применяемые в промышленном альпинизме, так же имеют самые различные конструкции. Я встречал более JO раз­личных форм. Предлагаю форму «рамки», на мой взгляд, наиболее удобную для работы. Взяв её за основу, любой может доработать её под себя.

    Форма представляет из себя как бы сдвоенную «восьмёрку» с | кнехтами. В малые отверстия встёгиваются карабины. Спуск осу­ществляется по двум верёвкам. Две верёвки, во-первых, гаранти­руют безопасность, а во-вторых, позволяют осуществлять движе­ние маятником. Поочерёдно, вытравливая правую или левую ве­рёвку, можно уходить по стене влево или вправо. Верёвки крепят­ся к верхним карабинам «рамки», например, узлом УИАА, и фик­сируются петлями на кнехтах. Можно использовать «рамку» и как обычную «восьмёрку». К нижним карабинам «рамки» крепится беседка. «Бабочки» незаменимы при проведении спасательных работ. Они очень просты и удобны в применении. Данную конст­рукцию мне предложил Владимир Зайцев. Предлагаю это техни­ческое устройство назвагь «бабочка» Зайцева.