Поршень двигателя: конструктивные особенности. Поршень двигателя внутреннего сгорания: устройство, назначение, принцип работы Требования, предъявляемые к конструкции поршня

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.


Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Большинство автомобилей заставляет перемещаться поршневой двигатель внутреннего сгорания (сокращённо ДВС) с кривошипно-шатунным механизмом. Такая конструкция получила массовое распространение в силу малой стоимости и технологичности производства, сравнительно небольших габаритов и веса.

По виду применяемого топлива ДВС можно разделить на бензиновые и дизельные. Надо сказать, что бензиновые двигатели великолепно работают на . Такое деление непосредственно сказывается на конструкции двигателя.

Как устроен поршневой двигатель внутреннего сгорания

Основа его конструкции — блок цилиндров. Это корпус, отлитый из чугуна, алюминиевого или иногда магниевого сплава. Большинство механизмов и деталей других систем двигателя крепятся именно к блоку цилиндров, или располагаются внутри его.

Другая крупная деталь двигателя, это его головка. Она находится в верхней части блока цилиндров. В головке также располагаются детали систем двигателя.

Снизу к блоку цилиндра крепится поддон. Если эта деталь воспринимает нагрузки при работе двигателя, её часто называют поддоном картера, или картером.

Все системы двигателя

  1. кривошипно-шатунный механизм;
  2. механизм газораспределения;
  3. система питания;
  4. система охлаждения;
  5. система смазки;
  6. система зажигания;
  7. система управления двигателем.

Кривошипно-шатунный механизм состоит из поршня, гильзы цилиндра, шатуна и коленчатого вала.

Кривошипно-шатунный механизм:
1. Расширитель маслосъёмного кольца. 2. Кольцо поршневое маслосъёмное. 3. Кольцо компрессионное, третье. 4. Кольцо компрессионное, второе. 5. Кольцо компрессионное, верхнее. 6. Поршень. 7. Кольцо стопорное. 8. Палец поршневой. 9. Втулка шатуна. 10. Шатун. 11. Крышка шатуна. 12. Вкладыш нижней головки шатуна. 13. Болт крышки шатуна, короткий. 14. Болт крышки шатуна, длинный. 15. Шестерня ведущая. 16. Заглушка масляного канала шатунной шейки. 17. Вкладыш подшипника коленчатого вала, верхний. 18. Венец зубчатый. 19. Болты. 20. Маховик. 21. Штифты. 22. Болты. 23. Маслоотражатель, задний. 24. Крышка заднего подшипника коленчатого вала. 25. Штифты. 26. Полукольцо упорного подшипника. 27. Вкладыш подшипника коленчатого вала, нижний. 28. Противовес коленчатого вала. 29. Винт. 30. Крышка подшипника коленчатого вала. 31. Болт стяжной. 32. Болт крепления крышки подшипника. 33. Вал коленчатый. 34. Противовес, передний. 35. Маслоотрожатель, передний. 36. Гайка замковая. 37. Шкив. 38. Болты.

Поршень расположен внутри гильзы цилиндра. При помощи поршневого пальца он соединен с шатуном, нижняя головка которого крепится к шатунной шейке коленчатого вала. Гильза цилиндра представляет собой отверстие в блоке, или чугунную втулку, вставляемую в блок.

Гильза цилиндров с блоком

Гильза цилиндра сверху закрыта головкой. Коленчатый вал также крепится к блоку в нижней его части. Механизм преобразует прямолинейное движение поршня во вращательное движение коленчатого вала. То самое вращение, которое, в конечном счете, заставляет крутиться колеса автомобиля.

Газораспределительный механизм отвечает за подачу смеси паров топлива и воздуха в пространство над поршнем и удаление продуктов горения через клапаны, открываемые строго в определенный момент времени.

Система питания отвечает в первую очередь за приготовление горючей смеси нужного состава. Устройства системы хранят топливо, очищают его, смешивают с воздухом так, чтобы обеспечить приготовление смеси нужного состава и количества. Также система отвечает за удаление из двигателя продуктов горения топлива.

При работе двигателя образуется тепловая энергия в количестве большем, чем двигатель способен преобразовать в механическую энергию. К сожалению, так называемый термический коэффициент полезного действия, даже лучших образцов современных двигателей не превышает 40%. Поэтому приходится большое количество «лишней» теплоты рассеивать в окружающем пространстве. Именно этим и занимается , отводит тепло и поддерживает стабильную рабочую температуру двигателя.

Система смазки . Это как раз тот случай: «Не подмажешь, не поедешь». В двигателях внутреннего сгорания большое количество узлов трения и так называемых подшипников скольжения: есть отверстие, в нем вращается вал. Не будет смазки, от трения и перегрева узел выйдет из строя.

Система зажигания призвана поджечь, строго в определенный момент времени, смесь топлива и воздуха в пространстве над поршнем. такой системы нет. Там топливо самовоспламеняется при определенных условиях.

Видео:

Система управления двигателем при помощи электронного блока управлении (ЭБУ) управляет системами двигателя и координирует их работу. В первую очередь это приготовление смеси нужного состава и своевременное поджигание её в цилиндрах двигателя.

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях - при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы - термостойкие алюминиевые или стальные сплавы. Поршни изготавливаются двумя методами - литьем или штамповкой.

Конструкция поршня

Поршень двигателя имеет достаточно простую конструкцию, которая состоит из следующих деталей:

Volkswagen AG

  1. Головка поршня ДВС
  2. Поршневой палец
  3. Кольцо стопорное
  4. Бобышка
  5. Шатун
  6. Стальная вставка
  7. Компрессионное кольцо первое
  8. Компрессионное кольцо второе
  9. Маслосъемное кольцо

Конструктивные особенности поршня в большинстве случаев зависят от типа двигателя, формы его камеры сгорания и типа топлива , которое используется.

Днище

Днище может иметь различную форму в зависимости от выполняемых им функций - плоскую, вогнутую и выпуклую. Вогнутая форма днища обеспечивает более эффективную работу камеры сгорания, однако это способствует большему образованию отложений при сгорании топлива. Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Поршневые кольца

Ниже днища расположены специальные канавки (борозды) для установки поршневых колец. Расстояние от днища до первого компрессионного кольца носит название огневого пояса.

Поршневые кольца отвечают за надежное соединение цилиндра и поршня. Они обеспечивают надежную герметичность за счет плотного прилегания к стенкам цилиндра, что сопровождается напряженным процессом трения. Для снижения трения используется моторное масло . Для изготовления поршневых колец применяется чугунный сплав.

Количество поршневых колец, которое может быть установлено в поршне зависит от типа используемого двигателя и его назначения. Зачастую устанавливаются системы с одним маслосъемным кольцом и двумя компрессионными кольцами (первым и вторым).

Маслосъемное кольцо и компрессионные кольца

Маслосъемное кольцо обеспечивает своевременное устранение излишков масла с внутренних стенок цилиндра, а компрессионные кольца - предотвращают попадания газов в картер.

Компрессионное кольцо, расположенное первым, принимает большую часть инерционных нагрузок при работе поршня.

Для уменьшения нагрузок во многих двигателях в кольцевой канавке устанавливается стальная вставка, увеличивающая прочность и степень сжатия кольца. Кольца компрессионного типа могут быть выполнены в форме трапеции, бочки, конуса, с вырезом.

Маслосъемное кольцо в большинстве случаев оснащено множеством отверстий для дренажа масла, иногда - пружинным расширителем.

Поршневой палец

Это трубчатая деталь, которая отвечает за надежное соединение поршня с шатуном. Изготавливается из стального сплава. При установке поршневого пальца в бобышках, он плотно закрепляется специальными стопорными кольцами.

Поршень, поршневой палец и кольца вместе создают так называемую поршневую группу двигателя.

Юбка

Направляющая часть поршневого устройства, которая может быть выполнена в форме конуса или бочки. Юбка поршня оснащается двумя бобышками для соединения с поршневым пальцем.

Для уменьшения потерь при трении, на поверхность юбки наносится тонкий слой антифрикционного вещества (зачастую используется графит или дисульфид молибдена). Нижняя часть юбки оснащена маслосъемным кольцом.

Обязательный процесс работы поршневого устройства - это его охлаждение, которое может быть осуществлено следующими методами:

  • разбрызгиванием масла через отверстия в шатуне или форсункой;
  • движением масла по змеевику в поршневой головке;
  • подачей масла в область колец через кольцевой канал;
  • масляным туманом

Уплотняющая часть

Уплотняющая часть и днище соединяются в форме головки поршня. В этой части устройства расположены кольца поршня - маслосъемное и компрессионные. Каналы для колец имеют небольшие отверстия, через которые отработанное масло попадает на поршень, а затем стекает в картер двигателя.

В целом поршень двигателя внутреннего сгорания является одной из самых тяжело нагруженных деталей, который подвергается сильным динамическим и одновременно тепловым воздействиям. Это накладывает повышенные требования как к материалам, используемым в производстве поршней, так и к качеству их изготовления.

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ - поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень - первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя цилиндрической формы. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения, из-за чего поршень выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

КОНСТРУКЦИЯ

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

ДНИЩЕ

Днище - основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища - форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых - устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

УПЛОТНЯЮЩАЯ ЧАСТЬ

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня - канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.


Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 - 6). Наиболее же распространена конструкция с тремя кольцами - двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

ЮБКА

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации поршневого пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

ТИПЫ ПОРШНЕЙ

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под поршневой палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней - возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

МАТЕРИАЛЫ ИЗГОТОВЛЕНИЯ

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

ВИДЕО: ПОРШЕНЬ. ПРИНЦИП РАБОТЫ ПОРШНЯ ДВИГАТЕЛЯ. УСТРОЙСТВО



Поршневая группа

Поршневая группа образует подвижную стенку рабочего объема цилиндра. Именно перемещение этой «стенки», т. е. поршня, является показателем работы, выполненной сгоревшими и расширяющимися газами.
Поршневая группа кривошипно-шатунного механизма включает в себя поршень, поршневые кольца (компрессионные и маслосъемные), поршневой палец и фиксирующие его детали. Иногда поршневую группу рассматривают вместе с цилиндром, и называют цилиндропоршневой группой.

Поршень

Требования, предъявляемые к конструкции поршня

Поршень воспринимает силу давления газов и передает ее через поршневой палец шатуну. При этом он совершает прямолинейное возвратно-поступательное движение.

Условия, в которых работает поршень:

  • высокое давление газов (3,5…5,5 МПа для бензиновых, и 6,0…15,0 МПа для дизельных двигателей);
  • контакт с горячими газами (до 2600 ˚С );
  • движение с переменой направления и скорости.

Возвратно-поступательное движение поршня вызывает значительные инерционные нагрузки в зонах прохода мертвых точек, где поршень изменяет направление движения на противоположное. Инерционные силы зависят от скорости перемещения поршня и его массы.

Поршень воспринимает значительные усилия: более 40 кН в бензиновых двигателях, и 20 кН – в дизелях. Контакт с горячими газами вызывает нагрев центральной части поршня до температуры 300…350 ˚С . Сильный нагрев поршня опасен возможностью заклинивания в цилиндре из-за температурного расширения, и даже прогоранием днища поршня.

Перемещение поршня сопровождается повышенным трением и, как следствие, изнашиванием его поверхности и поверхности цилиндра (гильзы). Во время движения поршня от верхней мертвой точки к нижней и обратно сила давления поверхности поршня на поверхность цилиндра (гильзы) изменяется и по величине, и по направлению в зависимости от такта, протекающего в цилиндре.

Максимальное давление поршень оказывает на стенку цилиндра при такте рабочего хода, в момент, когда шатун начинает отклоняться от оси поршня. При этом сила давления газов, передаваемая поршнем шатуну, вызывает реактивную силу в поршневом пальце, который в данном случае является цилиндрическим шарниром. Эта реакция направлена от поршневого пальца вдоль линии шатуна, и может быть разложена на две составляющие – одна направлена вдоль оси поршня, вторая (боковая сила) перпендикулярна ей и направлена по нормали к поверхности цилиндра.

Именно эта (боковая) сила и вызывает значительное трение между поверхностями поршня и цилиндра (гильзы), приводящее к их износу, дополнительному нагреву деталей и снижению КПД из-за потерь энергии.

Попытки уменьшить силы трения между поршнем и стенками цилиндра осложняются тем, что между цилиндром и поршнем необходим минимальный зазор, обеспечивающий полную герметизацию рабочей полости с целью не допустить прорыв газов, а также попадание масла в рабочее пространство цилиндра. Величина зазора между поршнем и поверхностью цилиндра лимитируется тепловым расширением деталей. Если его сделать слишком малым, в соответствии с требованиями герметичности, то возможно заклинивание поршня в цилиндре из-за теплового расширения.

При изменении направления движения поршня и процессов (тактов), протекающих в цилиндре, сила трения поршня о стенки цилиндра меняет характер – поршень прижимается к противоположной стенке цилиндра, при этом в зоне перехода мертвых точек поршень совершает удары по цилиндру из-за резкого изменения величины и направления нагрузки.

Конструкторам, при разработке двигателей, приходится решать комплекс проблем, связанных с описанными выше условиями работы деталей цилиндропоршневой группы:

  • высокими тепловыми нагрузками, вызывающими температурное расширение и коррозию металлов деталей КШМ;
  • колоссальным давлением и инерционными нагрузками, способным разрушить детали и их соединения;
  • значительными силами трения, вызывающими дополнительный нагрев, износ и потери энергии.

Исходя из этого, к конструкции поршня предъявляются следующие требования:

  • достаточная жесткость, позволяющая выдерживать силовые нагрузки;
  • тепловая стойкость и минимальные температурные деформации;
  • минимальная масса для снижения инерционных нагрузок, при этом масса поршней в многоцилиндровых двигателях должна быть одинаковой;
  • обеспечение высокой степени герметизации рабочей полости цилиндра;
  • минимальное трение о стенки цилиндров;
  • высокая долговечность, поскольку замена поршней связана с трудоемкими ремонтными операциями.

Особенности конструкции поршня

Поршни современных автомобильных двигателей имеют сложную пространственную форму, которая обусловлена различными факторами и условиями, в которых работает эта ответственная деталь. Многие элементы и особенности формы поршня не заметны невооруженным глазом, поскольку отклонения от цилиндричности и симметрии минимальны, тем не менее, они присутствуют.
Рассмотрим подробнее – как устроен поршень двигателя внутреннего сгорания, и на какие хитрости приходится идти конструкторам, чтобы обеспечить выполнение требований, изложенных выше.

Поршень двигателя внутреннего сгорания состоит из верхней части – головки и нижней – юбки.

Верхняя часть головки поршня – днище непосредственно воспринимает усилия со стороны рабочих газов. В бензиновых двигателях днище поршня обычно делают плоским. В поршневых днищах дизелей часто выполняют камеру сгорания.

Днище поршня представляет собой массивный диск, который соединяется с помощью ребер или стоек с приливами, имеющими отверстия для поршневого пальца – бобышками. Внутренняя поверхность поршня выполняется в виде арки, что обеспечивает необходимую жесткость и теплоотвод.



На боковой поверхности поршня прорезаны канавки для поршневых колец. Число поршневых колец зависит от давления газов и средней скорости перемещения поршня (т. е. частоты вращения коленчатого вала двигателя) – чем меньше средняя скорость поршня, тем больше требуется колец.
В современных двигателях, наряду с ростом частоты вращения коленчатого вала, наблюдается тенденция к сокращению числа компрессионных колец на поршнях. Это обусловлено необходимостью уменьшения массы поршня с целью снижения инерционных нагрузок, а также уменьшения сил трения, отнимающих существенную долю мощности двигателя. При этом возможность прорыва газов в картер высокооборотистого двигателя считается менее актуальной проблемой. Поэтому в двигателях современных легковых и гоночных автомобилей можно встретить конструкции с одним компрессионным кольцом на поршне, а сами поршни имеют укороченную юбку.

Кроме компрессионных колец на поршне устанавливают одно или два маслосъемных кольца. Канавки, выполненные в поршне под маслосъемные кольца, имеют дренажные отверстия для отвода моторного масла во внутреннюю полость поршня при снятии его кольцом с поверхности цилиндра (гильзы). Это масло обычно используется для охлаждения внутренней поверхности днища и юбки поршня, а затем стекает в поддон картера.


Форма днища поршня зависит от типа двигателя, способа смесеобразования и формы камеры сгорания. Наиболее распространена плоская форма днища, хотя встречаются выпуклая и вогнутая. В некоторых случаях в днище поршня выполняют углубления для тарелок клапанов при расположении поршня в верхней мертвой точке (ВМТ). Как упоминалось выше, в днищах поршней дизельных двигателей нередко выполняют камеры сгорания, форма которых может различной.

Нижняя часть поршня – юбка направляет поршень в прямолинейном движении, при этом она передает стенке цилиндра боковое усилие, величина которого зависит от положения поршня и процессов, протекающих в рабочей полости цилиндра. Величина бокового усилия, передаваемого юбкой поршня, значительно меньше максимального усилия, воспринимаемого днищем со стороны газов, поэтому юбка выполняется относительно тонкостенной.

В нижней части юбки у дизелей часто устанавливают второе маслосъемное кольцо, что позволяет улучшить смазывание цилиндра и уменьшить вероятность попадания масла в рабочую полость цилиндра. Для уменьшения массы поршня и сил трения ненагруженные части юбки срезают по диаметру и укорачивают по высоте. Внутри юбки обычно выполняются технологические приливы, которые используются для подгонки поршней по массе.

Конструкция и размеры поршней зависят главным образом от быстроходности двигателя, а также от величины и скорости нарастания давления газов. Так, поршни быстроходных бензиновых двигателей максимально облегчены, а поршни дизелей имеют более массивную и жесткую конструкцию.

В момент перехода поршня через ВМТ изменяется направление действия боковой силы, которая является одной из составляющих силы давления газов на поршень. В результате поршень перемещается от одной стенки цилиндра к другой – происходит перекладка поршня . Это вызывает удар поршня о стенку цилиндра, сопровождающийся характерным стуком. Чтобы уменьшить это вредное явление поршневые пальцы смещают на 2…3 мм в сторону действия максимальной боковой силы; при этом боковая сила давления поршня на цилиндр значительно уменьшается. Такое смещение поршневого пальца называется дезаксажем .
Применение в конструкции поршня дезаксажа требует соблюдения правил монтажа КШМ - поршень должен устанавливаться строго по меткам, указывающим, где передняя часть (обычно это стрелка на днище).

Оригинальное решение, призванное снизить воздействие боковой силы, применили конструкторы двигателей фирмы "Фольксваген". Днище поршня в таких двигателях выполнено не под прямым углом к оси цилиндра, а немного скошено. По мнению конструкторов, это позволяет оптимальнее распределить нагрузку на поршень, и улучшить процесс смесеобразования в цилиндре при тактах впуска и сжатия.

Для того, чтобы удовлетворить противоречивые требования герметичности рабочей полости, предполагающие наличие минимальных зазоров между юбкой поршня и цилиндром, и предотвращения заклинивания детали в результате теплового расширения, в форме поршня применяют следующие конструктивные элементы:

  • уменьшение жесткости юбки за счет специальных прорезей, компенсирующих ее тепловое расширение и улучшающих охлаждение нижней части поршня. Прорези выполняют на той стороне юбки, которая наименее нагружена боковыми силами, прижимающими поршень к цилиндру;
  • принудительное ограничение теплового расширения юбки вставками из материалов с меньшим, чем у основного металла, коэффициентом температурного расширения;
  • придание юбке поршня такой формы, чтобы в нагруженном состоянии и при рабочей температуре она приняла форму правильного цилиндра.

Последнее условие выполнить непросто, поскольку поршень нагревается по всему объему неравномерно и имеет сложную пространственную форму – в верхней части его форма симметрична, а в районе бобышек и на нижней части юбки имеются ассиметричные элементы. Все это приводит к неодинаковой температурной деформации отдельных участков поршня при его нагреве во время работы.
По этим причинам в конструкции поршня современных автомобильных двигателей обычно выполняют следующие элементы, усложняющие его форму:

  • днище поршня имеет меньший диаметр по сравнению с юбкой и наиболее приближено в поперечном сечении к правильной окружности.
    Меньший диаметр сечения днища поршня связан с его высокой рабочей температурой и, как следствие, с большим тепловым расширением, чем в районе юбки. Поэтому поршень современного двигателя в продольном сечении имеет слегка коническую или бочкообразную форму, зауженную к днищу.
    Уменьшение диаметра в верхнем поясе конической юбки для поршней из алюминиевого сплава составляет 0,0003…0,0005D , где D – диаметр цилиндра. При нагреве до рабочих температур форма поршня по длине «выравнивается» до правильного цилиндра.
  • в районе бобышек поршень имеет меньшие поперечные габариты, поскольку здесь сосредоточены массивы металла, и тепловое расширение больше. Поэтому поршень ниже днища имеет в поперечном сечении овальную или эллиптическую форму, которая при нагреве детали до рабочих температур приближается к форме правильной окружности, а поршень по форме приближается к правильному цилиндру.
    Большая ось овала располагается в плоскости, перпендикулярной оси поршневого пальца. Величина овальности колеблется от 0,182 до 0,8 мм .

Очевидно, что на все эти ухищрения конструкторам приходится идти, чтобы придать поршню в нагретом до рабочих температур состоянии правильную цилиндрическую форму, обеспечив тем самым минимальный зазор между ним и цилиндром.

Наиболее эффективным способом предотвращения заклинивания поршня в цилиндре вследствие его теплового расширения при минимальном зазоре является принудительное охлаждение юбки и вставка в юбку поршня элементов из металла, имеющего низкий коэффициент температурного расширения. Чаще всего применяются вставки из малоуглеродистой стали в виде поперечных пластин, которые при отливке поршня помещаются в зону бобышек. В некоторых случаях вместо пластин применяются кольца или полукольца, заливаемые в верхнем поясе юбки поршня.

Температура днища алюминиевых поршней не должна превышать 320…350 ˚С . Поэтому для увеличения теплоотвода переход от днища поршня к стенкам делают плавным (в виде арки) и достаточно массивным. Для более эффективного теплоотвода от днища поршня применяют его принудительное охлаждение, брызгая на внутреннюю поверхность днища моторное масло из специальной форсунки. Обычно функцию такой форсунки выполняет специальное калиброванное отверстие, выполненное в верхней головке шатуна. Иногда форсунка устанавливается на корпусе двигателя в нижней части цилиндра.

Для обеспечения нормального теплового режима верхнего компрессионного кольца его располагают значительно ниже кромки днища, образуя так называемый жаровой или огневой пояс. Наиболее изнашиваемые торцы канавки под поршневые кольца часто усиливают специальными вставками из износостойкого материала.

В качестве материала для изготовления поршней широко применяют алюминиевые сплавы, основным достоинством которых является небольшая масса и хорошая теплопроводность. К недостаткам алюминиевых сплавов можно отнести невысокую усталостную прочность, большой коэффициент температурного расширения, недостаточную износостойкость и сравнительно высокую стоимость.

В состав сплавов кроме алюминия входят кремний (11…25% ) и добавки натрия, азота, фосфора, никеля, хрома, магния и меди. Отлитые или отштампованные заготовки подвергают механической и термической обработке.

Значительно реже в качестве материала для поршней используют чугун, поскольку этот металл значительно дешевле и прочнее алюминия. Но, несмотря на высокую прочность и износостойкость, чугун обладает сравнительно большой массой, что приводит к появлению значительных инерционных нагрузок, особенно при изменении направления движения поршня. Поэтому для изготовления поршней быстроходных двигателей чугун не применяется.