Радиоактивность. Виды и законы радиоактивного излучения

Радиация существовала задолго до появления человека и сопровождает человека от рождения до смерти. Ни один из наших органов чувств не способен распознавать коротковолновое излучение. Для выявления его человеку пришлось изобрести специальные приборы, без которых никак нельзя судить ни об уровне радиации, ни об опасности, которую она в себе несет.

История изучения радиоактивности

Все живое на нашей планете возникло, развивалось и существует в условиях, иногда далеких от благоприятных. На живые организмы действуют перепады температур, атмосферные осадки, движение воздуха, изменения атмосферного давления, чередование дня и ночи и другие факторы. Среди них особое место занимает ионизирующая радиация, образующаяся за счет 25 природных радиоактивных элементов, таких как уран, радий, радон, торий и др. Естественная радиоактивность - это частицы, летящие сквозь атмосферу от Солнца и звезд Галактики. Это два источника ионизирующего облучения всего живого и неживого.

Рентгеновское, или γ-излучение, представляет собой электромагнитные волны с высокой частотой и чрезвычайно большой энергией. Все виды ионизирующего излучения обусловливают ионизацию и изменение облучаемых объектов. Считается, что все живое на Земле приспособилось к действию ионизирующих излучений и не реагирует на них. Существует даже гипотеза, что естественная радиоактивность - это двигатель эволюции, благодаря которому возникло такое большое количество видов, самых разнообразных по форме и способам жизни организмов, поскольку мутации есть не что иное, как возникновение новых признаков организма, которые могут привести к появлению совершенно нового вида.

В течение XVIII-XIX столетий, а особенно сейчас, естественный радиационный фон на Земле повысился и продолжает увеличиваться. Причиной стала прогрессирующая индустриализация всех развитых стран, в результате которой при увеличении добычи металлических руд, угля, нефти, строительных материалов, удобрений и других полезных ископаемых на ее поверхность в больших количествах поступают различные минералы, содержащие природные радиоактивные элементы. При сжигании минеральных источников энергии, особенно таких, как уголь, торф, горючие сланцы, в атмосферу попадает много различных веществ, в том числе и радиоактивных. В середине XX века была открыта искусственная радиоактивность. Это привело к созданию атомной бомбы в США, а затем и в других странах, а также к развитию атомной энергетики. Во время атомных взрывов, работы АЭС (особенно при авариях), в окружающей среде, кроме постоянного естественного фона, накапливается искусственная радиоактивность. Это приводит к появлению очагов и больших территорий с высоким уровнем радиоактивности.

Что такое радиоактивность, кто открыл это явление?

Радиоактивность была открыта в 1896 году физиком из Франции А. Беккерелем. Он определил, что главным источником радиационного облучения является гамма-излучение вследствие его большой проникающей способности. Радиоактивность - это излучение, которому постоянно подвергается человек в результате воздействия природных источников радиации (космические и солнечные лучи, земное излучение). Его называют естественным радиационным фоном. Он существовал всегда: с момента образования нашей планеты и до настоящего времени. Человек, как и любой другой организм, постоянно находится под действием естественного радиационного фона. По данным Научного Комитета ООН по действию атомной радиации (НКДАР), радиоактивное облучение человека, вызванное действием природных источников радиоактивности, составляет около 83 % всей радиации, полученной человеком. Остальные 17 % вызываются техногенными источниками радиоактивности. Открытие и практическое применение ядерной энергии вызвало много проблем. С каждым годом расширяется сфера контактов человечества и всего живого с ионизирующим излучением. Уже сегодня из-за загрязнения почвы и атмосферы радиоактивными продуктами атомной энергетики и экспериментальных ядерных взрывов, большого распространения лучевого лечения и медицинской диагностики, применения новых стройматериалов радиационное давление увеличилось более чем в два раза.

Виды радиоактивности

На получение человеком предельных доз действует искусственная и естественная радиоактивность. Это процесс, который активизирует изучение биологического воздействия радиации все более широким кругом лиц. Каждый человек должен знать, какая есть связь между мощностью экспозиционной дозы излучения (МЭД) и эквивалентной дозой облучения, которая является определяющей для оценки ущерба, причиненного человеку радиацией.

β-частицы имеют энергию примерно от 0,01 до 2,3 МэВ, движутся со скоростью света. На своем пути создают в среднем 50 пар ионов на 1 см пути и не так быстро тратят свою энергию, как α-частицы. Чтобы задержать β- облучение, требуется металл толщиной не менее 3 мм.

Естественная радиоактивность вещества - это когда α-частицы выпускаются ядрами и имеют энергию от 4 до 9 МэВ. Выброшеные из ядер с большой начальной скоростью (до 20000 км/с), α-частицы тратят энергию на ионизацию атомов вещества, которые встречаются на их пути (в среднем 50 000 пар ионов на 1 см пути), и останавливаются.

γ-излучение принадлежит к электромагнитному излучению с длиной волны меньше 0,01 нм, энергия γ-кванта изменяется примерно от 0,02 до 2,6 МэВ. Фотоны γ-излучения поглощаются в одном или в нескольких актах взаимодействия с атомами вещества. Вторичные электроны ионизируют атомы окружающей среды. Частично гамма-излучение задерживается лишь толстой свинцовой (толщиной более 200 мм) или бетонной плитой.

Явление радиоактивности - это излучения, сопровождающиеся освобождением разного количества энергии и обладающие различной проникающей способностью, поэтому они оказывают различное влияние на организмы и экосистемы в целом. В дозиметрии пользуются величинами, которые количественно характеризуют радиоактивное свойство вещества и вызванные действием радиации эффекты: активность, экспозиционная доза излучения, поглощенная доза излучения, эквивалентная доза облучения. Открытие радиоактивности и возможность искусственного превращения ядер способствовали разработке методов и техники измерения радиоактивности элементов.

Лучевая болезнь

Радиоактивность - это излучение, которое является причиной лучевой болезни. Различают хроническую и острую формы этой болезни. Хроническая лучевая болезнь начинается в результате долгого облучения организма малыми (от 1 мЗв до 5 мЗв в сутки) дозами радиации после накопления суммарной дозы 0,7 ... 1,0 Сб. Острая лучевая болезнь вызывается однократным интенсивным облучением от 1-2 Зв дозе более 6 Сб. Выполненные расчеты эквивалентной дозы облучения показывают, что дозы, которые получает человек в обычных условиях в городе, к счастью, значительно ниже, чем те, что вызывают лучевую болезнь.

Мощность эквивалентной дозы, вызванной естественным излучением, - от 0,44 до 1,75 мЗв в год. Во время медицинской диагностики (рентгеновские исследования, лучевая терапия и т.д.) человек получает примерно 1,4 мЗв в год. Добавим, что в строительных материалах (кирпиче, бетоне) в небольших дозах также присутствуют радиоактивные элементы. Поэтому доза облучения возрастает еще на 1,5 мЗв в течение года.

Для фактологической оценки вредности радиоактивного излучения используют такую характеристику, как риск. Под риском обычно понимают вероятность нанесения вреда здоровью или жизни человека в течение определенного отрезка времени (как правило, в течение одного календарного года), рассчитывая его по формуле относительной частоты наступления опасного случайного события в совокупности всех возможных событий. Основным проявлением ущерба, причиненного радиоактивным излучением, является заболевание человека раком.

Группы радиотоксичности

Радиотоксичность - свойство радиоактивных изотопов вызвать патологические изменения при поступлении их в организм. Радиотоксичность изотопов зависит от ряда их характеристик и факторов, главными из которых являются следующие:

1) время поступления в организм радиоактивных веществ;

3) схема радиоактивного распада в организме;
4) средняя энергия одного акта распада;
5) распределение радиоактивных веществ по системам и органам;
6) пути поступления в организм радиоактивных веществ;
7) время пребывания в организме радионуклида;

Все радионуклиды как потенциальные источники внутреннего облучения распределяются на четыре группы радиотоксичности:

  • группа А - с особо высокой радиотоксичностью, min активность 1 кБк;
  • группа Б - с высокой радиотоксичностью, min активность не более 10 кБк;
  • группа В - со средней радиотоксичностью, min активность не более 100 кБк;
  • группа Г - с малой радиотоксичностью, min активность не более 1000 кБк.

Принципы нормирования радиактивного воздействия

В результате экспериментов на животных и изучения последствий облучения людей при ядерных взрывах, авариях на предприятиях ядерно-топливного цикла, лучевой терапии злокачественных опухолей, а также исследований других видов радиоактивности были установлены реакции организма на острое и хроническое облучение.

Нестохастические, или детерминистические эффекты имеют зависимость от дозы и проявляются в облученном организме за относительно короткий срок. С увеличением дозы облучения возрастает степень поражения органов и тканей - наблюдается эффект градуировки.

Стохастические, или вероятные (случайные) эффекты относятся к удаленным последствий облучения организма. В основе возникновения стохастических эффектов лежат вызванные облучением мутации и другие нарушения в клеточных структурах. Они возникают как в соматических (от латинского somatos -тело), так и в половых клетках и приводят к образованию в облученном организме злокачественных опухолей, а у потомства - аномалий развития и других нарушений, которые передаются по наследству (генетические эффекты). Принято считать, что порога мутагенного действия радиации не существует, а значит, нет и вполне безопасных доз. При дополнительном действии ионизирующего излучения как одного из многих факторов мутагенеза в дозе 1 сЗв (1 бэр) риск возникновения злокачественных опухолей возрастает на 5 %, а проявление генетических дефектов - на 0,4 %.

Риск гибели людей от дополнительного воздействия ионизирующего облучения в таких малых дозах значительно меньше риска их гибели в самом безопасном производстве. Но он есть, потому дозовые нагрузки на организм человека строго регламентированы. Эту функцию выполняют нормы радиационной безопасности.

НРБУ-97 направлены на недопущение возникновения детерминированных (соматических) эффектов и ограничение на принятом уровне возникновения стохастических эффектов. Радиационно-гигиенические регламенты, установленные НРБУ-97, построены на следующих трех принципах защиты:

Принцип оправданности;
. принцип непревышения;
. принцип оптимизации.

Естественная радиоактивность: уровни, дозы, риски

Система радиационной защиты граждан, построенная на результатах медико-биологических исследований, кратко формулируется так: степень возможного негативного влияния облучения на здоровье человека определяет только величина дозы, независимо от того, каким источником ионизирующего излучения она сформирована - естественным или искусственным. Техногенно усиленные источники природного происхождения относятся к управляемым компонентам суммарной дозы, и их вклад можно уменьшить, приняв соответствующие меры. Например, для радона в воздухе помещений и основных доз, которые формируют источники, оговорено две ситуации облучения: облучение в уже эксплуатируемых строениях и новых домах, которые только сдаются в эксплуатацию.

Нормативы требуют, чтобы эквивалентная равновесная активность радона в воздухе (ЭРОА) для домов эксплуатируемых не превышала 100 Бк/м3, что соответствует величине 250 Бк/м3 в сроке объемной активности, который применяется в большинстве европейских стран. Для сравнения, в новых "Основных стандартах безопасности" (BSS) МАГАТЭ референтный уровень для радона определен в 300 Бк/м3.

Для новых домов, детских учреждений и больниц эта величина равна 50 Бк/м3 (или 125 Бк/м3 газа радона). Измерение радиоактивности радона, по НРБУ-97, как и по нормативным документам других стран мира, проводится только интегральными методами. Это требование очень важно, потому что уровень радона в воздухе одной квартиры или дома может изменяться в 100 раз в течение суток.

Радон - 222

В ходе исследований, которые проводились в России в последние годы, были проанализированы структура и величина существующих доз облучения и установлено, что для населения в помещениях главное опасное вещество, которое создает радиоактивность, - это радон. Содержание этого вещества в воздухе можно легко снизить, если увеличить вентилирование помещения или ограничить поступление газа герметизацией подвального пространства. По данным отдела радиационной гигиены, порядка 23 % жилого фонда не соответствуют требованиям действующей нормативной базы по содержанию радона в воздухе помещений. Если жилой фонд довести до действующих нормативов, убытки можно уменьшить вдвое.

Расмотрим, почему же так вреден радон? Радиоактивность - это распад естественных радионуклидов уранового ряда, при котором радон-222 преобразуется в газ. При этом он образует коротко существующие дочерние продукты (ДПР): полоний, висмут, свинец, которые, присоединяясь к частицам пыли или влаги, образуют радиоактивный аэрозоль. Попадая в легкие, эта смесь через небольшой период полураспада ДПР радона-222 приводит к относительно высоким дозам облучения, которые могут быть причиной дополнительного риска заболеваний раком легких.

По данным обследования жилищного фонда отдельных регионов (28000 домов) специалистами института гигиены и медицинской экологии, средневзвешенная по отдельным областям среднегодовая эффективная доза облучения населения от радона составляет 2,4 мЗв/год, для сельского населения эта величина выше почти вдвое и составляет 4,1 мЗв/год. Для отдельных регионов дозы радона варьируются в достаточно широких пределах - от 1,2 мЗв/год до 4,3 мЗв/год, а индивидуальные дозы населения могут превышать дозовые лимиты для профессионалов категории А (20 мЗв/год).

Если оценить по принятым в мировой практике методам смертность от рака легких, обусловленного облучением радоном-222, то она составляет порядка 6000 случаев в год. Необходимо также учитывать, что в последние годы получены знания о влиянии радона. Так, по данным некоторых эпидемиологических исследований установлено, что радон может вызывать лейкемию у детей. По данным AS Evrard, связь между радоном и лейкемией у детей имеет прирост 20 % на каждые 100 Бк/м3. По данным Raaschou-Nielsen, этот прирост больше 34 % на каждые 100 Бк/м3.

Радиоактивность и шлаки

Во всех странах очень остро стоит проблема переработки и захоронения металлических отходов, имеющих радиоактивность. Это тоже источник излучения - не только от аварий, как например, на Чернобыльской АЭС, но и от действующих атомных электростанций, где постоянно проводятся плановые замены агрегатов. Как при этом быть со старыми металлическими узлами и конструкциями, которые имеют высокую радиоактивность? Специалисты из института электросварки разработали плазменно-дуговой способ плавки в водоохлаждаемом тигле, который обеспечивает удаление в шлаки металла или сплава, которые имеют радиоактивность. Это физика самой безопасной очистки. При этом можно использовать различные шлаковые композиции с высокой ассимилирующей способностью. Этим способом можно удалить даже те радиоактивные элементы, которые находятся в трещинах и углублениях поверхности. Для разрезания металлических отходов предусмотрено применять плазменную резку и взрыв под водой, электрогидравлическую резку и уплотнение разрезаемых узлов и конструкций. Эти высокопроизводительные технологии исключают образование пыли при работе, следовательно, предотвращают загрязнение окружающей среды. Стоимость переработки радиоактивных отходов по отечественному проекту ниже, чем у иностранных разработчиков.

Основные принципы защиты от закрытых источников ионизирующих излучений

Закрытые источники ионизирующих излучений обусловливают лишь внешнее облучение организма. Принципы защиты можно вывести из таких основных закономерностей распределения излучений и характера их взаимодействия с веществом:

Доза внешнего облучения пропорциональна времени и интенсивности воздействия излучения;
. интенсивность излучения от источника прямо пропорциональна количеству частиц или квантов или частиц;
. проходя через вещество, излучения им поглощаются, и их пробег зависит от плотности этого вещества.

Основные принципы защиты от внешнего облучения базируются на:

а) защите временем;
б) защите количеством;
в) защите экранами (экранирование источников материалами);
г) защите расстоянием (увеличение расстояния до максимально возможных величин).

В комплексе защитных мероприятий следует учитывать и вид излучения радиоактивных веществ (α-, β-частицы, γ-кванты). Защита от внешнего излучения α-частицами не нужна, поскольку пробег их в воздухе составляет 2,4-11 см, а в воде и тканях живого организма - только 100 мк. Спецодежда полностью защищает от них.

При внешнем облучении β-частицы влияют на кожный покров и роговицу глаз и в больших дозах вызывают сухость и ожоги кожи, ломкость ногтей, катаракту. Для защиты от β-частиц используют резиновые перчатки, очки и экраны. В случае особо мощных потоков β-частиц следует применять дополнительные экраны, предназначенные для защиты от тормозного рентгеновского излучения: фартуки и перчатки из просвинцованной резины, просвинцованное стекло, ширмы, боксы и тому подобное.

Защита от внешнего γ-излучения может обеспечиваться сокращением времени непосредственной работы с источниками, применением защитных экранов, поглощающих излучение, увеличением расстояния от источника.

Вышеупомянутые способы защиты можно применять отдельно или в различных комбинациях, но так, чтобы дозы внешнего фотонного облучения лиц категории А не превышали 7 мР в день и 0,04 Р в неделю. Защита путем уменьшения времени непосредственной работы с источниками фотонного излучения достигается скоростью манипуляций с препаратом, сокращением продолжительности рабочего дня и рабочей недели.

  • лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами ;
  • лучи второго типа отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц (в противоположную сторону), их назвали β-лучами ;
  • лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением .

Альфа-распад

α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4 He).

α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А ≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы , состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

Правило смещения Содди для α-распада:

. .

В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева , массовое число дочернего ядра уменьшается на 4.

Бета-распад

Беккерель доказал, что β-лучи являются потоком электронов . β-распад - это проявление слабого взаимодействия .

β-распад (точнее, бета-минус-распад, β − -распад) - это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино .

β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d -кварков в одном из нейтронов ядра в u -кварк ; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

Правило смещения Содди для β − -распада:

После β − -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино . При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом - электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад , он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 10 19 лет. Все типы бета-распада сохраняют массовое число ядра.

Гамма-распад (изомерный переход)

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра ¹H , ²H , ³H и ³He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьи времена жизни измеряются микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

Специальные виды радиоактивности

  • Протонная радиоактивность
  • Двухпротонная радиоактивность
  • Нейтронная радиоактивность

Литература

  • Сивухин Д. В. Общий курс физики. - 3-e издание, стереотипное. - М .: Физматлит, 2002. - Т. V. Атомная и ядерная физика. - 784 с. - ISBN 5-9221-0230-3

См. также

  • Единицы измерения радиоактивности

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Радиоактивность" в других словарях:

    Радиоактивность … Орфографический словарь-справочник

    - (от лат. radio излучаю, radius луч и activus действенный), способность нек рых ат. ядер самопроизвольно (спонтанно) превращаться в др. ядра с испусканием ч ц. К радиоактивным превращениям относятся: альфа распад, все виды бета распада (с… … Физическая энциклопедия

    РАДИОАКТИВНОСТЬ - РАДИОАКТИВНОСТЬ, свойство нек рых хим. элементов самопроизвольно превращаться в другие элементы. Это превращение или радиоактивный распад сопровождается выделением энергии в виде различных корпускулярных и лучистых радиации. Явление Р. было… … Большая медицинская энциклопедия

    Радиоактивность - (от радио... и латинского activus деятельный), свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд ядра Z, число нуклонов A) путем испускания элементарных частиц, g квантов или ядерных фрагментов. Некоторые из… … Иллюстрированный энциклопедический словарь

    - (от лат. radio испускаю лучи и activus действенный) самопроизвольное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц или? кванта. Известны 4 типа радиоактивности: альфа распад, бета распад,… … Большой Энциклопедический словарь

    Способность некоторых атомных ядер самопроизвольно распадаться с испусканием элементарных частиц и образованием ядра другого элемента. Р. урана была впервые открыта Беккерелем в 1896 г. Несколько позднее М. и П. Кюри и Резерфордом было доказано… … Геологическая энциклопедия

    Свойство некотор. тел испускать особого рода невидимые лучи, отличающиеся особыми свойствами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. радиоактивность (радио... + лат. acti vus деятельный) радиоактивный… … Словарь иностранных слов русского языка

    Сущ., кол во синонимов: 1 гамма радиоактивность (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотопы обычно другого элемента, сопровождающееся испусканием элементарных частиц или ядер (альфа и бетα излучение), а также гаммα излучением. Бывает естественной и… … Морской словарь

Радиоактивность. Виды радиоактивности

Наименование параметра Значение
Тема статьи: Радиоактивность. Виды радиоактивности
Рубрика (тематическая категория) Радио

Явление радиоактивности было обнаружено А. Беккерелœем в 1896 ᴦ. Изучая свойства солей урана, он случайно обнаружил самопроизвольное испускание ими излучения, способного проходить сквозь непрозрачные для видимого света вещества. Это излучение действовало на фотопластинку, ионизировало воздух, проника­ло сквозь тонкие металлические пластинки, вызывало люминœесценцию ряда веществ. Продолжая исследование этого явления, супруги М. Кюри и П. Кюри обнаружили, что такое излучение свойственно не только урану, но и многим другим тяжелым элементам.

Обнаруженное излучение было названо радиоактивным излучением , а само явле­ние – испускание радиоактивного излучения – радиоактивностью . В результате радиоактивного излучения ядра атомов одного химического элемента превращаются в ядра атомов другого элемента. Вокруг нового ядра формируется соответствующая ему электронная оболочка, образуется новый атом.

В результате опытов по отклонению радиоактивного излучения в электрическом и магнитном полях и опытов по поглощению излучения в веществе были установлены три вида излучения.

1. a-Излучение. Отклоняется электрическим и магнитным полями, обладает высокой ионизирующей способностью и малой проникающей способностью (к примеру, погло­щаются слоем алюминия толщиной примерно 0,05 мм). Экспериментально было установлено что a-излучение представляет собой поток ядер гелия ; заряд a-частицы равен +2е, а масса приблизительно равна 4 а.е.м.

Альфа-радиоактивными являются почти исключительно ядра атомов элементов с порядковым номером Z >82. Запись реакции a-распада:

где – обозначение исходного, так называемого материнского ядра, – обозначение конечного, так называемого дочернего ядра, – ядро гелия.

2. b-Излучение . Отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (примерно на два порядка), а проникающая способность гораздо больше (поглощается слоем алюминия толщиной примерно 2 мм), чем у a -частиц. b -излучение представляет собой поток быстрых электронов.

Ниже приведена запись реакции b - распада ядра:

- b ‾-распад, (20.2)

где – символическое обозначение электрона (заряд электрона равен –1, массовое число равно нулю), - электронное антинœейтрино (заряд равен нулю, массовое число равно нулю). Такой вид распада получил название b ‾-распада. В дальнейшем экспериментально для ядер, не встречающихся в природе и полученных в лаборатории в результате ядерных реакций, был обнаружен еще один вид b - распада ядра, который принято называть b + - распадом:

- b + - распад, (20.3)

где – символическое обозначение позитрона (заряд равен +1, массовое число равно нулю), - электронное нейтрино (заряд равен нулю, массовое число равно нулю). Позитрон (экспериментально обнаружен в 1932 году), электронное нейтрино и электронное антинœейтрино (экспериментально обнаружены в 1956 году) – элементарные частицы. Следует заметить, что существование названных элементарных частиц сначала было предсказано теоретически.

3. g-Излучение . Не отклоняется электрическим и магнитным полями, обладает от­носительно слабой ионизирующей способностью и очень большой проникающей спо­собностью (к примеру, проходит через слой свинца толщиной 5 см). g-Излучение представляет собой корот­коволновое электромагнитное излучение с чрезвычайно малой длиной волны l <10 -10 м.

Правило смещения . Радиоактивные превращения ядер подчиняются правилу смещения, сформулированному впервые Ф.Содди: при a-распаде ядро теряет положительный заряд 2е и его массовое число уменьшается на 4 единицы. В результате получается ядро атома элемента͵ который располагается в таблице Менделœеева на две клетки ближе к началу таблицы. При b ‾-распаде заряд ядра увеличивается на единицу, массовое число остается неизменным. В результате получается ядро атома элемента͵ который располагается в таблице Менделœеева на одну клетку дальше от начала таблицы.

Возникающие при радиоактивном распаде новые ядра бывают также радиоактивными и испытывать дальнейшие радиоактивные превращения. Это приводит к возникновению цепочки, или ряда радиоак­тивных превращений, заканчивающихся стабильным элементом. Совокупность элемен­тов, образующих такую цепочку, принято называть радиоактивным семейством.

Еще раз отметим, что радиоактивные излучения сопровождают процессы, происходящие внутри ядра, в результате которых ядро становится ядром уже другого атома.

Радиоактивность подразделяется на естественную (наблюдается у неустойчивых изотопов, существу­ющих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций). Принципиального различия между этими двумя типами радиоактив­ности нет, так как законы радиоактивного превращения в обоих случаях одинаковы. Как правило, каждый из радиоактивных изотопов испускает какой-то определœенный вид излучения - a -частицы или b -частицы. g -Излучение в виде самостоятельного излучения среди естественно-радиоактивных веществ не встречается, но часто сопровождает a -распад и b -распад. К числу радиоактивных процессов относятся также спонтанное делœение тяжелых ядер.

Радиоактивность. Виды радиоактивности - понятие и виды. Классификация и особенности категории "Радиоактивность. Виды радиоактивности" 2017, 2018.

К основным типам радиоактивности относятся альфа-,бета- и гамма-распады..

Альфа-распад. В этом случае происходит самопроизвольное испускание ядром α-частицы (ядра нуклида 4 Не), и это проис­ходит по схеме

где X - символ материнского ядра, Y - дочернего.

Установлено, что α-частицы испускают только тяжелые ядра. Кинетическая энергия, с которой α-частицы вылетают из рас­падающегося ядра, порядка нескольких МэВ. В воздухе при нормальном давлении пробег α-частиц составляет несколько сантиметров (их энергия расходуется на образование ионов на своем пути).

Альфа-частица возникает только в момент радиоактивного распада ядра. Покидая ядро, ей прихо­дится преодолевать потенциальный барь-­
ер, высота которого превосходит ее энер­гию (см.рис.).

Внутренняя сторона барь­ера обусловлена ядерными силами, внешняя же - силами кулоновского от­талкивания α-частицы и дочернегоядра.
Преодоление α-частицей потенциаль­
ного барьера в данных условиях происходит благодаря туннельному эффекту

Квантовая теория, учитывая вол­новые свойства α-частицы, «позволяет» ей с определенной веро­ятностью проникать сквозь такой барьер. Соответствующий расчет хорошо подтверждается результатами измерений.

Бета-распад. Так называют самопроизвольный процесс, в котором исходное ядро превращается в другое ядро с тем же массовым числом А , но с зарядовым числом Z , отличающимся от исходного на ±1. Это связано с тем, что β -распад сопровождается испусканием электрона (позитрона) или его захватом из оболочки атома. Различают три разновидности β -распада:

1)электронный - распад, в котором ядро испускает электрон и его зарядовое число Z становится Z + 1;

2)позитронный - распад, в котором ядро испускает позитрон и его зарядовое число Z становится Z - 1;

3)К -захват , в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К -оболочки) и его зарядовое число Z становится равным Z -1. На освободив­шееся место в К -оболоч-ке переходит электрон с другой обо­лочки, и поэтому К -захват всегда сопровождается характе­-
ристическим рентгеновским излучением.

«Проблему -распада» ре­шил Паули (1930), предположивший, что вместе с электроном испускается электрически нейтральная частица, неуловимая вследствие очень большой проникающей способности. Ее назва­ли нейтрино .

Важное обстоятельство в пользу гипотезы о существовании нейтрино - это необходимость сохранения момента импульса в реакции распада. Дело в том, что отличи­тельной чертой (-распада является превращение в ядре ней­трона в протон, и наоборот. Поэтому можно сказать, что -распад есть не внутриядерный процесс, а внутринуклонный про­цесс. В связи с этим указанные выше три разновидности -распада обусловлены следующими превращениями нукло­нов в ядре:


Сейчас установлено, что спин ней­трино равен 1/2.

Наблюдать нейтрино непосредственно очень сложно. Это обу­словлено тем, что их электрический заряд равен нулю, масса (если она есть) чрезвычайно мала, фантастически мало и эф­фективное сечение взаимодействия их с ядрами. Согласно тео­ретическим оценкам средняя длина свободного пробега нейтри­но с энергией 1 МэВ в воде порядка 10 16 км (или 100 световых лет!). Это значительно превышает размеры звезд. Такие ней­трино свободно пронизывают Солнце, а тем более Землю.

Чтобы зарегистрировать процесс захвата нейтрино, необхо­димо иметь огромные плотности потока их. Это стало возмож­ным только после создания ядерных реакторов, которые и были использованы как мощные источники нейтрино.

Непосредственное экспериментальное доказательство суще­ствования нейтрино было получено в 1956 г.

Гамма-распад . Этот вид распада заключается в испускании возбужденным ядром при переходе его в нормальное состояние γ-квантов, энергия которых варьируется в пределах от 10 кэВ до 5 МэВ. Существенно, что спектр испускаемых γ-квантов диск­ретный, так как дискретны энергетические уровни самих ядер.

В отличие от β -распада, γ -распад - процесс внутриядерный, а не внутринуклонный.

Возбужденные ядра образуются при β -распаде в случае, если распад материн­ского ядра X в основное состояние дочерне­го ядра Y запрещен. Тогда дочернее ядро Y оказывается в одном из возбужденных состояний, переход из которого в основное состояние и сопровождается испусканием у-квантов (см.рис.).

Возбужденное ядро может перейти в основное состояние и другим путем, путем непосредственной передачи энергии воз­буждения одному из атомных электронов, например, в К -оболочке. Этот процесс, конкурирующий с β -распадом, называют внутренней конверсией электронов.Внутренняя конверсия сопровождается рентгеновским излучением.

Ядерные реакции

Ядерная реакция - это процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, - процесс, сопровождающийся преобразованием ядер. Это взаи­модействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10 -13 см.

Отметим, что именно ядерные реакции дают наиболее широ­кую информацию о свойствах ядер. Поэтому изучение ядерных реакций является самой главной задачей ядерной физики.

Наиболее распространенным типом ядерной реакции явля­ется взаимодействие частицы а с ядром X, в результате чего об­разуется частица b и ядроY. Это записывают символически так:

Роль частиц а и b чаще всего выполняют нейтрон п , протон р , дейтрон d , α -частица и γ -квант..

Частицы, рождающиеся в результате ядерной реакции, могут быть не только b и Y , но вместе с ними и другие b", Y" . В этом случае говорят, что ядерная реакция имеет несколько ка­налов, причем различным каналам соответствуют различные вероятности.

Типы ядерных реакций. Установлено, что реакции, вызыва­емые не очень быстрыми частицами, протекают в два этапа. Первый этап - это захват налетающей частицы а ядром X с об­разованием составного (или промежуточного) ядра. При этом энергия частицы а быстро перераспределяется между всеми нуклонами ядра, и составное ядро оказывается в возбужденном состоянии. В этом состоянии ядро пребывает до тех пор, пока в результате внутренних флуктуации на одной из частиц (кото­рая может состоять и из нескольких нуклонов) не сконцентри­руется энергия, достаточная для вылета ее из ядра.

Такой механизм протекания ядерной реакции был предло­жен Н. Бором (1936) и впоследствии подтвержден эксперимен­тально. Эти реакции иногда записывают с указанием составно­го ядра С , как например

где звездочка у С указывает на то, что ядро С* возникает в воз­бужденном состоянии.

Составное ядро С* существует достаточно долго - по сравне­нию с «ядерным временем», т. е. временем пролета нуклона с энергией порядка 1 МэВ (v 10 9 см/с) расстояния, равного диа­метру ядра. Ядерное время я 10 -21 с. Время же жизни состав­ного ядра в возбужденном состоянии ~ 10 -14 с. Т. е. в ядерном масштабе составное ядро живет действительно очень долго. За это время все следы истории его образования исчезают. Поэто­му распад составного ядра - вторая стадия реакции - проте­кает независимо от способа образования составного ядра.

Реакции, вызываемые быстрыми частицами с энергией, пре­вышающей десятки МэВ, протекают без образования составно­го ядра. И ядерная реакция, как правило, является прямой. В этом случае налетающая частица непосредственно передает свою энергию какой-то частице внутри ядра, например, одному нук­лону, дейтрону, α -частице и т. д., в результате чего эта частица вылетает из ядра.

Типичная реакция прямого взаимодействия - это реакция срыва, когда налетающей частицей является, например, дей­трон. При попадании одного из нуклонов дейтрона в область действия ядерных сил он будет захвачен ядром, в то время как другой нуклон дейтрона окажется вне зоны действия ядерных сил и пролетит мимо ядра. Символически реакцию срыва запи­сывают как (d, n ) или (d, p ).

При бомбардировке ядер сильно взаимодействующими час­тицами с очень высокой энергией (от нескольких сотен МэВ ивыше) ядра могут «взрываться», распадаясь на множество мел­ких осколков. При регистрации такие взрывы оставляют след в виде многолучевых звезд.

Энергия реакции . Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии.

Реакции с выделением энергии называют экзоэнергетическими, реакции с поглощением энергии - эндоэнергетическими.

У электрона есть античастица - позитрон, который был обнаружен в составе космического излучения. Существо­вание позитронов также было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Позитрон - частица с массой, равной массе электрона, и спином 1/2 (в единицах ), несущая положительный заряд +е.

Согласно Бору, ядерные реакции протекают в две стадии по схеме:

Первая стадия - захват ядром частицы а и образование промежуточного ядра С , называемого составным, или компаунд-ядром. Вторая стадия - распад составного ядра на ядро Y и частицу b .

Фредерик и Ирен Жолио-Кюри бомбардировали α -частицами В, А1 и Mg, что привело к искусственно радиоактивным ядрам, претерпеваю-щим -распад (позитронный распад или + р- распад):

В ядерных реакциях выполняется правило смещения

Процесс р + - распада протекает так, как если бы один из протонов ядра превратился в нейт­рон, испустив при этом позитрон и нейтрино:

Позитроны могут рождаться при взаимодействии γ -квантов большой энергии (E γ > 1,02 МэВ = 2m e с 2 ) с веществом. Этот процесс протекает по схеме

Электронно-позитронные пары были обнаружены в камере Вильсона, поме­щенной в магнитное поле, в которой и отклонялись в противопо­ложные стороны. Процесс превращения электронно-позитронной пары (при столкновении позитрона с электроном) в два γ - кванта, называется аннигиляция. При аннигиляции энергия пары переходит в энергию фотонов

Появление в этом процессе двух γ -квантов следует из законов сохранения импульса и энергии.

Захват ядром электрона с одной из внутренних оболочек атома (К, L и т. д.) с испусканием нейтрино (электронный захват или е-захват) происходит по следующей схеме:

(появление нейтрино вытекает из закона сохранения спина). В общем виде схема е -захвата:

В зависимости от скорости (энергии) нейтроны делят на медленные и быстрые.

Медленные нейтроны: ультрахолодные (≤ 10 -7 эВ),

очень холодные(10 -7 ÷10 -4 эВ),холодные(10 -4 ÷10 -3 эВ),

тепловые (10 -3 ÷0,5 эВ), резонансные (0,5÷10 4 эВ) Электронный захват обнаруживается по сопровождающему его харак­теристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома. Вся энергия распада уносится нейтрино.

Замедлить нейтроны можно пропуская их через вещество, содержащее водород (например, воду). Они испытывают при этом рассеяние и замедляются.

Радиоактивное излучение является мощным воздействием на человеческий организм, способным вызвать необратимые процессы, ведущие к трагическим последствиям. В зависимости от мощности различные виды радиоактивных излучений могут вызвать тяжелые заболевания, а могут, наоборот, лечить человека. Некоторые из них используются в диагностических целях. Другими словами, все зависит от контролируемости процесса, т.е. его интенсивности и продолжительности воздействия на биологические ткани.

Сущность явления

В общем случае под понятием радиация подразумевается высвобождение частиц и их распространение в виде волн. Радиоактивность подразумевает самопроизвольный распад ядер атомов некоторых веществ с появлением потока заряженных частиц большой мощности. Вещества, способные на такое явление, получили название радионуклидов.

Так что такое радиоактивное излучение? Обычно под этим термином отмечаются как радиоактивные, так и радиационные излучения. По своей сути, это направленный поток элементарных частиц значительной мощности, вызывающих ионизацию любой среды, попадающей на их пути: воздух, жидкости, металлы, минералы и другие вещества, а также биологические ткани. Ионизация любого материала ведет к изменению его структуры и основных свойств. Биологические ткани, в т.ч. человеческого организма, подвергаются изменениям, которые не совместимы с их жизнедеятельностью.

Различные типы радиоактивного излучения имеют разную проникающую и ионизирующую способность. Поражающие свойства зависят от следующих основных характеристик радионуклеидов: вид радиации, мощность потока, период полураспада. Ионизирующая способность оценивается по удельному показателю: количеству ионов ионизируемого вещества, формируемых на расстоянии в 10 мм по пути проникновения излучения.

Негативное воздействие на человека

Радиационное облучение человека приводит к структурным изменениям в тканях организма. В результате ионизации в них появляются свободные радикалы, которые представляют собой активные в химическом плане молекулы, поражающие и убивающие клетки. Первыми и наиболее сильно страдают желудочно-кишечная, мочеполовая и кроветворная системы. Появляются выраженные симптомы их дисфункции: тошнота и рвота, повышенная температура, нарушение стула.

Достаточно типичной является лучевая катаракта, вызванная воздействием излучения на глазные ткани. Наблюдаются и другие серьезные последствия радиационного облучения: сосудистый склероз, резкое снижение иммунитета, гематогенные проблемы. Особую опасность представляет повреждение генетического механизма. Возникающие активные радикалы способны изменить структуру главного носителя генетической информации — ДНК. Такие нарушения могут приводить к непрогнозируемым мутациям, отражающимся на следующих поколениях.

Степень поражения человеческого организма зависит от того, какие виды радиоактивного излучения имели место, какова интенсивность и индивидуальная восприимчивость организма. Главный показатель — доза облучения, показывающая, какое количество радиации проникло в организм. Установлено, что разовая большая доза значительно опаснее, чем накопление такой дозы при длительном облучении маломощным излучением. Поглощенное организмом количество радиации измеряется в эйвертах (Эв).

Любая жизненная среда имеет определенный уровень радиации. Нормальным считается радиационный фон не выше 0,18-0,2 мЭв/ч или 20 микрорентгенов. Критический уровень, ведущий к летальному исходу, оценивается в 5,5-6,5 Эв.

Разновидности излучения

Как отмечалось, радиоактивное излучение и его виды могут по-разному воздействовать на человеческий организм. Можно выделить следующие основные разновидности радиации.

Излучения корпускулярного типа, представляющие собой потоки частиц:

  1. Альфа-излучение. Это поток, составленный из альфа-частиц, имеющих огромную ионизирующую способность, но глубина проникновения небольшая. Даже листок плотной бумаги способен остановить такие частицы. Одежда человека достаточно эффективно исполняет роль защиты.
  2. Бета-излучение обусловлено потоком бета-частиц, летящих со скоростью, близкой к скорости света. Из-за огромной скорости эти частицы имеют повышенную проникающую способность, но ионизирующие возможности у них ниже, чем в предыдущем варианте. В качестве экрана от данного излучения могут служить оконные окна или металлический лист толщиной 8-10 мм. Для человека оно очень опасно при прямом попадании на кожу.
  3. Нейтронное излучение состоит из нейтронов и обладает наибольшим поражающим воздействием. Достаточная защита от них обеспечивается материалами, в структуре которых есть водород: вода, парафин, полиэтилен и т.п.

Волновое излучение, представляющее собой лучевое распространение энергии:

  1. Гамма-излучение является, по своей сути, электромагнитным полем, создающимся при радиоактивных превращениях в атомах. Волны испускаются в виде квантов, импульсами. Излучение имеет очень высокую проницаемость, но низкую ионизирующую способность. Для защиты от таких лучей нужны экраны из тяжелых металлов.
  2. Рентгеновское излучение, или Х-лучи. Эти квантовые лучи во многом аналогичны гамма-излучению, но проникающие возможности несколько занижены. Такой тип волны вырабатывается в вакуумных рентгеновских установках за счет удара электронами о специальную мишень. Общеизвестно диагностическое назначение данного излучения. Однако следует помнить, что продолжительное действие его способно нанести человеческому организму серьезный вред.

Как может облучиться человек

Человек получает радиоактивное облучение при условии проникновения радиации в его организм. Оно может происходить 2 способами: внешнее и внутреннее воздействие. В первом случае источник радиоактивного излучения находится снаружи, а человек по разным причинам попадает в поле его деятельности без надлежащей защиты. Внутреннее воздействие осуществляется при проникновении радионуклида внутрь организма. Это может произойти при употреблении облученных продуктов или жидкостей, с пылью и газами, при дыхании зараженным воздухом и т.д.

Внешние источники радиации можно подразделить на 3 категории:

  1. Естественные источники: тяжелые химические элементы и радиоактивные изотопы.
  2. Искусственные источники: технические устройства, обеспечивающие излучение при соответствующих ядерных реакциях.
  3. Наведенная радиация: различные среды после воздействия на них интенсивного ионизирующего излучения сами становятся источником радиации.

К наиболее опасным объектам в части возможного радиационного облучения можно отнести следующие источники радиации:

  1. Производства, связанные с добычей, переработкой, обогащением радионуклидов, изготовлением ядерного топлива для реакторов, в частности урановая промышленность.
  2. Ядерные реакторы любого типа, в т.ч. на электростанциях и кораблях.
  3. Радиохимические предприятия, занимающиеся регенерацией ядерного топлива.
  4. Места хранения (захоронения) отходов радиоактивных веществ, а также предприятия по их переработке.
  5. При использовании радиационных излучений в разных отраслях: медицина, геология, сельское хозяйство, промышленность и т.п.
  6. Испытание ядерного оружия, ядерные взрывы в мирных целях.

Проявление поражения организма

Характеристика радиоактивных излучений играет решающую роль в степени поражения человеческого организма. В результате воздействия развивается лучевая болезнь, которая может иметь 2 направления: соматическое и генетическое поражение. По времени проявления выделяется ранний и отдаленный эффект.

Ранний эффект выявляет характерные симптомы в период от 1 часа до 2 месяцев. Типичными считаются такие признаки: кожная краснота и шелушение, мутность глазного хрусталика, нарушение кроветворного процесса. Крайний вариант при большой дозе облучения — летальный исход. Локальное поражение характеризуются такими признаками, как лучевой ожог кожного покрова и слизистой оболочки.

Отдаленные проявления выявляются через 3-5 месяцев, а то и через несколько лет. В этом случае отмечаются устойчивые кожные поражения, злокачественные опухоли различной локализации, резкое ухудшение иммунитета, изменение состава крови (значительное снижение уровня эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов). В результате этого часто развиваются различные инфекционные болезни, существенно снижается продолжительность жизни.

Для предотвращения облучения человека ионизирующим излучением применяются различные виды защиты, которые зависят от типа радиации. Кроме того, регламентируются жесткие нормы по максимальной продолжительности пребывания человека в зоне облучения, минимальному расстоянию до источника радиации, использованию индивидуальных средств защиты и установке защитных экранов.

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.