Китайские модули регулируемых преобразователей напряжения. Радиодетали и модули с Aliexpress

Всем привет. Хочу рассказать Вам, про повышающий модуль (Бустер) маленького размера… Подобные модули использовал, когда собирал . Потому взял еще «про запас», т.к применение в радиолюбительском хозяйстве всегда найдется, особенно где используется батарейное питание… Всем кому интересно, добро пожаловать под Кат.

Продавец на сайте дает такие характеристики:
1. Module Свойства:неизолированный модуль повышающий (BOOST) 2. Входное напряжение:1-5 В 3. Выходное напряжение:5.1 ~ 5.2 В 4. Выходной Ток:номинальная 1А ~ 1.5A (Один вход литиевая батарея) 5. эффективность Преобразования:до 96% (входное напряжение, тем выше эффективность) 6. Частота Переключения:500 КГц 7. пульсация Выходного сигнала:мв (Макс) 20 М Пропускная Способность (Вход 4 В, Выход 5.1 В 1А) 8. индикация Напряжения:СВЕТОДИОДНЫЕ фонари с нагрузкой (входное напряжение ниже, чем 2.7 В СВЕТОДИОДНЫЙ индикатор выключен) 9. Рабочая температура:промышленного класса (-40 По Цельсию до + 85цельсия) 10. повышение температуры при Полной нагрузке:30цельсия 11. Ток покоя:130uA 12. регулирование нагрузки:± 1% 13. регулирование напряжения:± 0.5% 14. динамическая скорость отклика:5% 200uS 15. защита от короткого замыкания:нет
Модуль доехал ко мне за месяц. Трек не отслеживался… Упакован был в стандартный желтый конверт с «пупыркой» внутри…
Вот реальная фотография модуля:


Модуль реально маленький, вот сравнение с другим повышающим модулем на XL6009


На микросхеме SOT23-6 имеется маркировка 31=N10 По этой маркировке поиск приводит на этот Похоже, что это именно этот Step-up DC/DC Converter RT9266
Вот принципиальная схема данного модуля (взята из Даташит):


Проверяем напряжение на выходе. Чуть больше 5В… Напряжение держит в диапазоне от 0.8В и до 4.5В (выше не ставил)






Теперь проверим максимальный ток, что способен выдавать модуль… На выход подключаем амперметр и переменный проволочный резистор… Выставляем напряжение заряженного литиевого аккумулятора - 3.9В.


При токе на выходе 200мА - потребление от аккумулятора будет 370мА


При токе в 300мА потребление от АКБ будет 610мА


При токе на выходе в 370мА - микросхема ушла в защиту… Собственно никакого 1 Ампера на выходе я не увидел… О чем, в принципе, догадывался заранее… Но для питания маломощных устройств требующих 5В от литиевого аккумулятора подойдет…

Вот собственно и всё… Выводы делайте сами.
Из плюсов:
1.) Мне понравился маленький размер модуля.
2.) На выходе особых помех осциллографом не увидел, обычные иглы…
Из минусов:
Заявленный китайцами ток в 1А не выдает…
Всем мира и добра… С наступающим Праздником Днем 1 Мая!!! Ура, товарищи!!!

Планирую купить +9 Добавить в избранное Обзор понравился +34 +55

Благодаря развитию современной электроники, в большом количестве выпускаются специализированные микросхемы стабилизаторы тока и напряжения. Они делятся по функционалу на два основных вида, DC DC повышающий преобразователь напряжения и понижающие. Некоторые совмещают в себе оба типа, но это сказывается на КПД не в лучшую сторону.

Когда то многие радиолюбители мечтали о импульсных стабилизаторах, но они были редкими и дефицитными. Особенно радует ассортимент в китайских магазинах.


  • 1. Применение
  • 2. Популярные преобразования
  • 3. Повышающие преобразователи напряжения
  • 4. Примеры повышателей
  • 5. Tusotek
  • 6. На XL4016
  • 7. На XL6009
  • 8. MT3608
  • 9. Высоковольтные на 220
  • 10. Мощные преобразователи

Применение

Недавно я закупил много различных светодиодов на 1W, 3W, 5W, 10W, 20W, 30W, 50W, 100W. Все они низкого качества, для сравнения их с качественными. Чтобы всю эту кучу подключить и запитать у меня есть блоки питания от ноутбуков на 12 В и 19V. Пришлось активно полистать Aliexpress в поисках низковольтных светодиодных драйверов.

Были куплены современные повышающие преобразователи напряжения DC DC и понижающие, на 1-2 Ампера и мощные на 5-7 ампер. К тому же они отлично подойдут для подключения ноутбука к 12В в автомобиле, 80-90 ватт потянут. Они вполне подойдут в качестве зарядного устройства для автомобильных аккумуляторов на 12В и 24В.

В китайских интернет-магазинах немного подороже стабилизаторов напряжения.

Популярными микросхемами для повышающих импульсных стабилизаторов стали:

  1. LM2577, устаревшая с низким КПД;
  2. XL4016, в 2 раза эффективней 2577;
  3. XL6009;
  4. MT3608.

Стабилизаторы обозначаются таким образом AC-DC, DC-DC. АС – это переменный ток, DC – это постоянный. Это облегчит поиск, если указать в запросе.

Делать DC DC повышающий преобразователь своими руками не рационально, потрачу слишком много времени на сборку и настройку. У китайцев можно купить за 50-250руб, эта цена включает и доставку. За эту сумму получу почти готовое изделие, которое можно максимально быстро доработать.

Данные импульсные ИМС используются совместно с другими, написал характеристики и datasheet к популярным ИМС для питания , .

Популярные преобразования

Стабилизаторы-повышатели классифицируются на низковольтные и высоковольтные от 220 до 400 вольт. Конечно есть готовые блоки с фиксированным значением повышения, но я предпочитаю настраиваемые, у них более широкий функционал.

Чаще всего востребованы преобразования:

  1. 12В — 19V;
  2. 12 — 24 Вольт;
  3. 5 — 12V;
  4. 3 — 12В
  5. 12 — 220В;
  6. 24В — 220В.

Повышающие называют автомобильными инверторами.

Повышающие преобразователи напряжения

Мой лабораторный блок питания работает от блока ноутбука на 19V 90W, но этого не хватает для проверки последовательно подключенных светодиодов. Последовательная LED цепочка требует от 30В до 50В. Покупать готовый блок на 50-60 Вольт и 150W оказалось дороговато, около 2000 руб. Поэтому заказал первый повышающий стабилизатор за 500 руб. с повышением до 50В. После проверки оказалось, что он максимум до 32В, потому что на входе и выходе стоят конденсаторы на 35V. Убедительно написал продавцу своё возмущение, и через пару дней мне вернули денежку.

Заказал второй до 55V под брендом Tusotek за 280руб, повышатель оказался отличный. С 12В легко повышает до 60V, выше крутить построечный резистор не стал, вдруг сгорит. Радиатор приклеен на теплопроводящий клей, поэтому маркировку микросхемы посмотреть не удалось. Охлаждение сделано немного неправильно, теплоотводная площадка диода Шотки и контроллера прикреплена к плате, а не к радиатору.

Примеры повышателей

XL4016

..

Рассмотрим 4 модели, которые у меня есть в наличии. Тратить время на фото не стал, взял и продавцов.

Характеристики.

Tusotek XL4016 Драйвер MT3608
Входное, В 6 – 35В 6 – 32В 5 – 32В 2-24V
Ток на входе до 10А до 10А
Выход, В 6 – 55В 6 – 32В 6 – 60В до 28В
Ток на выходе 5А, макс 7А 5А, макс 8А макс 2А 1А, макс 2А
Цена 260руб 250руб 270руб 55руб

У меня большой опыт работы с китайскими товарами, большинство из них сразу имеют недостатки. Перед эксплуатацией их осматриваю и дорабатываю для увеличения надежности всей конструкции. В основном это проблемы сборки, которые возникают при быстрой сборке изделий. Дорабатываю светодиодные прожекторы, лампы для дома, автомобильные лампы ближнего и дальнего света, контроллеры для управления дневными ходовыми огнями ДХО. Рекомендую это делать всем, за минимум потраченного времени срок службы можно увеличить вдвое.

Будьте бдительны, не все имеют защиту от короткого замыкания, перегрева, перегрузки и неправильного подключения.

Реальная мощность зависит от режима, в спецификациях указывают максимальную. Характеристики конечно у каждого производителя будут отличаться, они ставят разные диоды, дроссель мотают проводом разной толщины.

Tusotek

На мой взгляд, самый лучший из всех повышающих стабилизаторов. У некоторых бывает элементы не имеют запаса по характеристикам или они ниже чем у ШИМ микросхем, из-за чего они не могут дать и половины обещанного тока. У Tusotek на входе стоит конденсатор 1000мФ 35V, на выходе 470мФ 63V. Теплоотводной стороной с металлической пластиной они припаяны к плате. Но припаяны плохо и косо, на плате лежит только один край, под другим щель. Без разбора не понятно, насколько хорошо они запаяны. Если совсем плохо, то лучше их демонтировать и поставить этой стороной на радиатор, охлаждение улучшится в 2 раза.

Переменным резистором выставляется необходимое количество вольт. Оно останется неизменным, если менять напряжение на входе, оно от него не зависит. Например, ставил на выходе 50В, на входе с 5В повышал до 12В, поставленные 50V не менялись.

На XL4016

Этот преобразователь имеет такую особенность, что может повышать только до 50% от входного количества вольт. Если подключить 12В, то максимальное увеличение будет 18В. В описании было указано, что его можно применять для ноутбуков, которые питаются максимум от 19V. Но его главное предназначение оказалось работа с ноутбуками от автомобильного аккумулятора. Наверное отграничение в 50% можно убрать, изменив резисторы, которые задают этот режим. Вольты на выходе напрямую зависят от количества входящих.

Отвод тепла сделан гораздо лучше, радиаторы поставлены правильно. Только вместо термопасты теплопроводящая прокладка, чтобы избежать электрического контакта с радиатором. На входе конденсатор 470мФ 50V, на другом конце 470мФ на 35V.

На XL6009

Представитель современных эффективных преобразователей, как и устаревшие модели на LM2596 выпускается с нескольких вариантах, от миниатюрных до моделей с индикаторами напряжения.

Пример эффективности:

  • 92% при преобразовании 12V в 19V, нагрузка 2А.

В даташите сразу указана схема использования в качестве питания ноутбука в автомобиле от 10V до 30V. Так же на XL6009 легко реализовать двуполярное питания на +24 и -24В. Как у большинства преобразователей КПД снижается, чем выше разница напряжений и больше Ампер.

MT3608

Миниатюрная модель с хорошим КПД до 97%, частота ШИМ 1,2 МГц. Эффективность повышается при увеличении входящего напряжения и падает при увеличении тока. На повышающем преобразователе MT3608 можно рассчитывать на небольшой ток, внутренне ограничение 4А на случай замыкания. По вольтам желательно не превышать 24.

Высоковольтные на 220

Блоки преобразования с 12, 24 вольт на 220 широко распространены у автолюбителей как . Используются для подключения приборов с питанием на 220В. У китайцев в основном продаются 7-10 моделей таких модулей, остальное это готовые устройства. Цена от 400 руб. Отдельно хочу отметить, если например на готовом блоке указано 500W, то это часто будет кратковременная максимальная мощность. Реальная долговременная будет около 240W.

Мощные преобразователи

Для особых случаев бывают нужны мощные DC-DC повышающие преобразователи на 10-20А и до 120В. Покажу несколько популярных и доступных моделей. Они в основном не имеют маркировки или продавец её скрывает, чтобы не покупали в другом месте. Лично не тестировал, по вольтажу они сосуществуют по обещанным характеристикам. А вот ампер будет немного поменьше. Хотя изделия такой ценовой категории у меня всегда держат заявленную нагрузку, покупал похожие аппараты только с ЖК экранами.

600W

Мощный №1:

  1. power 600W;
  2. 10-60V преобразует в 12-80V;
  3. цена от 800руб.

Найти можно по запросу «600W DC 10-60V to 12-80V Boost Converter Step Up»

400W

Мощный №2:

  1. power 400W;
  2. 6-40V преобразует в 8-80V;
  3. на выходе до 10А;
  4. цена от 1200руб.

Для поиска укажите в поисковике «DC 400W 10A 8-80V Boost Converter Step-Up»

B900W

Мощный №3:

  1. power 900W;
  2. 8-40V преобразует в 10-120V;
  3. на выходе до 15А.
  4. цена от 1400руб.

Единственный блок который обозначают как B900W и его можно легко найти.

Всем привет. Сегодня рассмотрим очередной Step Up + Step Down модуль. Отличается от своих младших собратьев возможностью регулировки тока, которая заметно расширяет варианты применения данного преобразователя. Так же используется ЖК экран, но этим уже мало кого удивишь.
Подробнее под катом.


Доставка заняла чуть больше двух недель



Характеристики

Входное напряжение: 5,5-30 В

Выходное напряжение: 0,5-30 В

Выходной ток: Долгосрочная стабильная работа в 3А, при активном охлаждении до 4А

Выходная мощность: 35 Вт натуральное охлаждение, при активном охлаждении до 50 Вт

Разрешение отображения напряжения: 0,05 В

Разрешение отображения тока: 0.005A

Эффективность преобразования: около 88%

Софт-старт: Да

Входная обратная Защита: да

Защита от обратного напряжения: Да

Защита от короткого замыкания: Да

Рабочая частота: 180 кГц

Размер: Д * Ш * В: 66*48*21 мм

Вес: 46 г

Распаковка и внешний вид.

Желтый пакет


Пенополиэтилен


Антистатический пакет


Сама плата, размеры продублирую: 66*48*21 мм


Используются довольно мощные мосфеты и


Для охлаждения которых в комплект подкинули алюминиевый радиатор


С обратной стороны из интересного LCD контроллер , контроллер , усилитель и, насколько я могу судить, контроллер


Пайка аккуратная, в комплекте есть четыре клипсы, которые приподнимают плату над столом, дабы избежать замыканий.


Конденсаторы подобраны с небольшим запасом, на 35 Вольт при максимальных 30 на выходе.

Рассмотрели модуль, пора протестировать его на практике


И да, для самых внимательных - при таком подключении мультиметра ничего страшного не произойдет, ниже поймете почему.

Тестирование.

Регулировка напряжения и тока осуществляется подстроечными резисторами, тут ничего нового и сложного нет.
Давайте разберемся с кнопочным управлением. Всего имеется две кнопки, IN/OUT и ON/OFF . Первая переключает отображение напряжение на входе или выходе, вторая включает или выключает выходное питание. Помимо этого есть еще две скрытые возможности, которые активируются при долгом зажатии.
IN/OUT - включает отображение мощности вместо силы тока


ON/OFF - настраивает триггер выходного напряжения после включения питания устройства


Довольно полезная опция, которую не так часто встретишь в бюджетном сегменте.

Мне было интересно по какому принципу работает ограничение тока, поэтому с него и начнем. У меня есть нагрузка на 35 Ватт, поэтому для начала настроил на выход 5 Вольт и 1 Ампер. Как только значение превысило данный порог, загорелся красный индикатор и напряжение начало проседать. Таким образом сработала защита и не дала превысить мощность выше 5 ватт.


Во многих модулях с защитой по току, при превышении нагрузки питание выключается полностью. Текущее поведение мне больше нравится, т.к. оно позволяет использовать данный модуль в качестве зарядного устройства.
Теория:
Задаем конечное напряжение, для лития пусть будет 4.2 Вольта, уменьшаем ток, подключаем аккумулятор и поднимаем ток, в моем случае до 750 мАч. Батарея будет потреблять явно больше, поэтому ток останется на нужном нам уровне, а напряжение просядет и будет подниматься по мере накопления заряда. Это как раз то что нам нужно.
Практика:
На создание данной гифки ушло около 5 часов времени, 1 час на запись и 4 на монтаж)


Отлично. К тому же по мере выравнивания напряжения, начал снижаться ток заряда. Прямо как в полноценном ЗУ.
Правда не обошлось без косяков. Я не сверил показатели напряжения и при 4.2 на мультметре, модуль только дошел до 4.15. Отключил аккумулятор, оказалось действительно есть расхождение в 64 мВ, что не критично, но грустно…


Поправил до нужного.


При изменении значения на 60+ мВ ток заряда упал ниже 100 мА


Минимум, что я увидел в строке амперметра, это 40 мА. До нуля ждать не стал, уже так была поздняя ночь.

Проверил заявленную защиту от обратного напряжения. При подключенном полностью заряженном аккумуляторе выключил модуль, ток разряда составил 4мА, что немного больше значения саморазряда этого же аккумулятора. Это значит, что можно не бояться за аккумуляторы при прекращении подачи основного питания, например при использовании сабжа совместно с солнечными панелями.

После зарядки сверил показания встроенного вольтметра. Расхождение есть во всем диапазоне.

Нормальный ток выдает даже на самом низком значении напряжения, правда защита не срабатывает даже при замыкании.


А вот при напряжении выше 1 Вольта, при КЗ полностью обрубается выход

Нагрузка только на 35 Ватт, так что радиатора должно было впритык хватить


Для 5 Вольт смог выжать только 3.7 А, после чего началась просадка напряжения.


После пяти минут прогрева при 35 Ваттах, температура радиатора поднялась чуть выше 40 градусов.

Ну и напоследок тестирование стабильности выставленных значений при скачках на входе.
Для этого использовал блок питания с регулируемым напряжением от 9 до 24 Вольта.
Выставил 5 Вольт на выходе, поднял нагрузку до 3 Ампер. Влияние на результат оказалось минимальным.

Итоги

Занятная модель. Совсем немного не дотягивает до максимума по заявленным характеристикам - на 2 Вольта по напряжению и около 0,3 Ампера по току, но в остальном неплохо. Нарисовать еще корпус, да добавить вентилятор, было бы вообще замечательно.

Я показал функционал и нюансы работы устройства. Нужно оно или нет и стоит ли своих денег, решать вам.
Если где-то ошибся или забыл что-то проверить - пишите об этом в комментариях, исправлю. Всем добра =)

P.S. Может кто подскажет куда лезть, чтобы поправить погрешность встроенного вольтметра?

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +54 Добавить в избранное Обзор понравился +77 +119

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Фаза 1

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Фаза 3

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Фаза 1

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Фаза 3

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

U ист *I ист = U потр *I потр

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере .

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Вытравил, спаял…

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

Как обидно, когда компактную схему портит большущий блок батареек. Бо́льшая часть плат требует стабилизированного напряжения 5 В, поэтому приходится использовать не менее 4 алкалиновых батареек AA или 6 NiMH-аккумуляторов и подключать их через понижающий стабилизатор. Решить эту проблему можно воспользовавшись повышающим стабилизатором, который увеличит напряжение и одновременно сделает его стабильным.

При помощи этого модуля вы можете собрать миниатюрное устройство, питающееся хоть от часовой батарейки на 3 В. Лишь бы хватило токоотдачи батарейки. С тем же успехом можно заменить малоёмкую «Крону» на блок из двух пальчиковых или мизинчиковых батареек.

Выходное напряжение задаётся триммером. Диапазон выходных напряжений - 5-28 В. Разметки на триммере нет, поэтому для проверки правильности задания напряжения потребуется вольтметр .

Минимальное входное напряжение модуля - 2,7 В, что позволяет запитывать устройства всего от одного элемента Li-Ion или двух алкалиновых батареек.

Любые преобразования энергии в реальных условиях сопровождаются потерями. Но мы постарались получить как можно более высокий КПД. Для нашего модуля он составляет 0,8…0,9 в зависимости от разности напряжений на входе и выходе, и тока потребителя.

Чтобы легко было понять, есть на выходе напряжение или нет, мы предусмотрели светодиод. Его яркость почти не зависит от выходного напряжения, т.к. запитывается он через специальную схему.

Основой модуля является микросхема .

Подключение

Подключение этого Troyka-модуля отличается от стандартного: вместо трёхпроводного разъёма он имеет два двухконтактных клеммника. Один из них - это входные питание и земля, другой - выходные. Земли входа и выхода электрически соединены друг с другом. Для удобства мы поместили обозначения «GND», «Vin» и «Vout» прямо на плату рядом с клеммниками.

Характеристики

  • Входное напряжение: 2,7-14 В
  • Выходное напряжение: 5-28 В
  • Максимальный выходной ток: 0,8 А
  • КПД: 0,8…0,9 в зависимости от разницы напряжений на входе и выходе, и тока
  • Габариты: 25,4×25,4 мм