Кинематические парадоксы и теория относительности. Парадоксы специальной и общей теорий относительности

На первый взгляд, патентное бюро было не самым перспективным
местом, где могла начаться величайшая со времен Ньютона револю-


ция в физике. Но были у этой службы и свои преимущества. Быстро
разделавшись с заявками на патенты, загромождавшими его стол,
Эйнштейн откидывался на стуле и погружался в детские воспомина-
ния. В молодости он прочел «Естественнонаучные книги для народа»
Аарона Бернштейна, «работу, которую я прочел, затаив дыхание»,
вспоминал Альберт. Бернштейн предлагал читателю представить, что
тот следует параллельно с электрическим током, когда тот передается
по проводам. В 16 лет Эйнштейн задал себе вопрос: на что был бы
похож луч света, если бы его можно было догнать? Он вспоминал:
«Такой принцип родился из парадокса, на который я натолкнулся в
16 лет: если я гонюсь за лучом света со скоростью с (скорость света
в вакууме), я должен наблюдать такой луч света как пространственно
колеблющееся электромагнитное поле в состоянии покоя. Однако,
кажется, такой вещи не может существовать - так говорит опыт, и
так говорят уравнения Максвелла». В детстве Эйнштейн считал, что
если двигаться параллельно лучу света со скоростью света, то свет
будет казаться замерзшим, подобно застывшей волне. Однако никто
не видел замерзшего света, так что тут явно что-то было не так.

В начале нового века существовали в физике два столпа, на кото-
рых покоилось все: ньютоновская теория механики и гравитации и
теория света Максвелла. В 1860-е годы шотландский физик Джеймс
Кларк Максвелл доказал, что свет состоит из пульсирующих элек-
трических и магнитных полей, постоянно переходящих друг в друга.
Эйнштейну же предстояло открыть, к его великому потрясению, что
эти два столпа противоречат друг другу, и одному из них предстояло
рухнуть.

В уравнениях Максвелла он обнаружил решение загадки, которая
преследовала его на протяжении 10 лет. Эйнштейн нашел в них то,
что упустил сам Максвелл: уравнения доказывали, что свет пере-
мещается с постоянной скоростью, при этом было совершенно не-
важно, с какой скоростью вы пытались догнать его. Скорость света
с была одинаковой во всех инерциальных системах отсчета (то есть
системах отсчета, двигающихся с постоянной скоростью). Стояли
ли вы на месте, ехали ли на поезде или примостились на мчащейся
комете, вы бы обязательно увидели луч света, нес)шщйся впереди вас
с постоянной скоростью. Неважно, насколько быстро вы двигались
бы сами, - обогнать свет вам не под силу.


Такое положение дел быстро привело к появлению множества па-
радоксов. Представьте на миг астронавта, пытающегося догнать луч
света. Астронавт стартует на космическом корабле, и вот он несется
голова в голову с лучом света. Наблюдатель на Земле, ставший свиде-
телем этой гипотетической погони, заявил бы, что астронавт и луч
света двигаются бок о бок. Однако астронавт сказал бы нечто иное, а
именно: луч света уносился от него вперед, как если бы космический
корабль находился в состоянии покоя.


Вопрос, вставший перед Эйнштейном, заключался в следующем:
как могут два человека настолько по-разному интерпретировать
одно и то же событие? По теории Ньютона, луч света всегда мож-
но догнать; в мире Максвелла это было невозможно. Эйнштейна
внезапно озарило, что уже в фундаментальных основах физики та-
ился фундаментальный же изъян. Эйнштейн вспоминал, что весной
1905 года «в моей голове разразился шторм». Он наконец нашел
решение: время движется с различными скоростями в зависимости от
скорости движения.
По сути, чем быстрее двигаться, тем медленнее
движется время. Время не абсолютно, как когда-то считал Ньютон.
По Ньютону, время однородно во всей Вселенной и длительность
одной секунды на Земле будет идентична одной секунде на Юпитере
или Марсе. Часы абсолютно синхронизированы со всей Вселенной.
Однако, по Эйнштейну, различные часы во Вселенной идут с различ-
ными скоростями.

Из преобразований Лоренца получаются следующие основные парадоксы (эффекты) СТО: постоянство скорости света в вакууме, равной ~300000 км\с. Эта скорость является предельной скоростью передачи любых взаимодействий; />! - замедление течения времени в быстро движущемся теле (пара- доке близнецов). Физические процессы в теле, движущемся со скоро- I стью V относительно некоторой инерциальной системы отсчета (ИСО), I протекают в 1/V(1 - v2/c2) раз медленнее, чем в данной ИСО;
I - масса тела ш0 определяется скоростью движения v. С увеличе- | нием скорости масса тела возрастает и становится равной m = mQ/V(I - сокращение продольных размеров тел в направлении их движения; относительность одновременности. События одновременные в одной ИСО в общем случае могут быть не одновременны в другой ИСО и др.
Рассмотрим, результаты некоторых экспериментов, которые приводятся в качестве доказательств правильности СТО , и дадим им свою оценку. . Постоянство скорости света. В главе 4 было показано, что скорость света зависит от плотности эфирного поля в каждой точке пространства, которая тем выше, чем ближе от нее находятся небесные тела, и чем массивнее они. Ho чем выше плотность эфирного поля, тем меньше скорость распространения света. Поэтому утверждение СТО
о постоянстве скорости света в вакууме не соответствует действительности. Скорость света определяется физическими характеристиками среды распространения.
Аналогично распространению света в эфирной среде распространяется, например, звук в воздушной или любой другой среде. Представим себе следующую картину: стоит тихая безветренная погода, летит самолет и в заданной точке пространства делает выстрел из орудия. Звуковая ударная волна будет распространяться с одинаковой скоростью во все стороны от точки пространства, в которой произведен выстрел. При этом скорость самолета и направление его полета к скорости звуковой волны и равномерности ее распространения в пространстве никакого отношения не имеют. Скорость звука равна = 336 м/сек (зависит от влажности воздуха и атмосферного давления).
Аналогия в распространении света и звука говорит о том, что любое возмущение распространяется всегда в некоторой среде. Скорость распространения возмущений не зависит от скорости источника волн, а определяется только свойствами среды распространения: света - в эфирной среде, звука - в воздушной среде. Скорость света и звука есть скорость распространения возмущений в среде их распространения, которая определяется свойствами самой среды и не зависит от скорости источника возмущения.
Мощность же источника возмущения (света, звука) определяет только частоту и амплитуду волны, но не скорость ее распространения. Замедление течения времени в быстро движущемся теле. Одним из методов экспериментальной проверки замедления времени является исследование зависимости жизни ц-мезонов (мюонов) от их энергии, т.е. скорости. Опыты показывают, что время жизни движущихся мюонов растет с ростом их скорости (энергии) в соответствии с законом замедления времени. С позиции же эфирной гипотезы рост времени жизни мюонов с ро- стом их скорости объясняется следующим образом.
Мюон имеет массу 206,7те (те - масса электрона) и распадается? по схеме ц- -> е~ + v + v. Отсюда видно, что дефект массы при распаде: пиона составляет 205,7ше, т.е. мюон в основном распадается в эфир- s.,. ную материю. При распаде мюона происходит выделение из его состава в окружающее пространство частичек эфирной материи - эфитонов. j. Как и любая другая движущаяся частица, мюон испытывает сопротив- ление своему движению со стороны эфирной среды, т.е. перед движу- j щимся мюоном происходит сгущение (увеличение плотности) эфирно- : го поля, которое как бы обволакивает мюон и тем самым замедляет его распад. С ростом скорости движения мюона плотность эфирного поля вокруг него возрастает и, соответственно, скорость распада мюона " уменьшается (время жизни увеличивается).
Время, как философская категория, определяющая форму и последо- вательные смены объектов и процессов, характеризует длительность их бытия. Поэтому абсолютного времени не существует. Ho последователь- ; ность смены объектов и процессов, длительность их бытия в каждой точке пространства определяется не ее координатами и скоростью, а плотностью эфищного поля, которая напрямую связана с плотностью распределения материальных масс в каждой рассматриваемой точке пространства.
XIII Генеральная конференция по мерам и весам в 1967 году в качестве эталона времени - секундЫ - приняла 9192631770 периодов излучений атомов цезия 113 при переходе их с одного уровня энергии на другой. Ho частота колебаний атомов вещества, по-видимому, должна определяться плотностью эфирного поля атома, которая, в свою очередь, зависит от плотности эфирного поля тела.
Отсюда продолжительность секунды на Земле может быть не равна ее продолжительности, например, на Солнце. Время в реально текущих событиях и процессах, происходящих в природе, хотя есть величина относительная, но оно никак не связано с пространством и скоростью движения тел в этом пространстве.
К.Э. Циолковский в своей беседе с A.J1. Чижевским о парадоксе времени в СТО сказал: «Ни Эйнштейну, ни его последователям не удалось даже частично решить проблему времени... Замедление времени в летящих со субсветовой скоростью кораблях по сравнению с земным, временем представляет собой либо фантазию, либо одну из очередных; ошибок нефилософского ума» . 3. Зависимость массы тела от скорости его движения.
Может ли масса тела зависеть от скорости его движения? СТО от- ! вечает: да. Ho так ли это? Если это закон, то он должен выполняться для любых тел и частиц, в том числе и для фотона (представим, что он существует).
Фотон является элементарной частицей, а его энергия должна определяться знаменитой формулой Эйнштейна E = mv2, где m - масса частицы движущаяся со скоростью v: m = Ri0Ml - v2/c2). Согласно второму постулату СТО скорость фотона всегда равняется скорости света, при которой масса фотона становится равной бесконечности.
Для выхода из этого положения есть три пути: либо согласиться, что в природе фотонов не существует, либо принять массу покой фотона равной нулю, либо фотоны имеют другую природу материи. Как и при создании СТО - исключили третье. Только при этом условии для энергии фотона получается конечная величина E = me2 = hv, где h - постоянная Планка (о ней ниже), v - частота световых колебаний. Так субъективно были связаны между собой корпускулярные и волновые свойства света.
Как было сказано выше (п. 3.5), формула Эйнштейна (Е = тс2) в своей философской основе неверна: масса и энергия - две объективные стороны материального мира и одна в другую переходить не могут. He может возрастать и масса тела при возрастании скорости его движения. $
Утверждается, что в качестве доказательства зависимости массы тела от его скорости являются результаты экспериментов на современных ускорителях, в которых учитывается эта зависимость (бетатрон, фазотрон и др.). Например, период обращения электронов в синхротроне практически не зависит от их энергии, уже начиная с энергии в несколько Мэв. Этот результат якобы говорит также о том, что скорость света является предельной скоростью передачи любых взаимодействий.
Результаты данных экспериментов говорят только о том, что скорость элементарной частицы в ускорителе практически перестает возрастать, начиная с энергии в несколько Мэв. Ho какими причинами можно объяснить данное явление? Увеличением массы частицы с ростом скорости ее движения и приближением ее скорости к предельной скорости? He только. В рамках эфирной гипотезы данное явление объясняется резким возрастанием сопротивления эфирной среды на движение частицы.
В познании законов Природы большую роль играют аналогии, т.е. перенос представлений из одной области в другую. Так, в частности, эффект Вавилова-Черенкова (ЭВЧ) является аналогом околозвукового излучения (конуса Маха). В ЭВЧ проявляется физический процесс взаимодействия эфирной среды с движущейся в ней частицей. При приближении скорости частицы к скорости света (скорости распространения

возмущений в эфирной среде) со- \ противление ее движению начинает резко возрастать, аналогично тому, как начинает резко возрастать сопротивление воздушной среды на движение самолета при приближении его скорости к скорости звука.
ЭВЧ возникает при достижении частицей (например, электроном) скорости V, превышающей фазовую скорость света в рассматриваемой прозрачной среде V gt; с/п, где п - показатель преломления света в данной среде. В соответствии с принципом Гюйгенса волновой фронт образует с направлением движения частицы угол CosQ = c/nv. Если пренебречь дисперсией (зависимостью п от частоты света), то излучение будет иметь резкий фронт, образующий конус с углом раствора я - 2Q и частицей в его вершине. Этот конус аналогичен конусу Маха, характеризующему ударную волну, возникающую, например, при движении сверхзвукового самолета в воздухе.
Как пишет В.JI. Гинзбург в своей книге “О науке, о себе и о других”, ЭВЧ «проявляется не только в средах с показателем пgt; I, но и при движении заряда в каналах, щелях и вблизи среды (диэлектрика)» . Данный факт свидетельствует о том, что эфирное поле материальных тел вблизи их поверхностей, особенно в каналах, щелях и других вогнутостях, имеет повышенную плотность с показателем преломления пgt; I.
Таким образом, ЭВЧ может являться одним из доказательств существования эфирной среда. Механизм проявления волновых процессов в эфирной среде тот же самый, что и в воздушной, водной и других средах.
При достижении скорости частицы равной скорости света должна возникнуть эфирная ударная волна, которая примерно в один миллион раз может быть сильнее ударной звуковой волны (в сZv = 300000/0,3 = = IO6 pas). Поэтому создать космический корабль, способный преодолеть эфирный (световой) барьер, по-видимому, невозможно.
" 4. Связь массы и энергии. Считается, что косвенной проверкой связи массы и энергии (Е = тс2) является строго выполняемое равенство ДЕ = Amc2, которое неопровержимо доказано огромным количеством опытных фактов.

Утверждение о том, что выполняемое равенство ДЕ = Дшс2 подтверждает правильность формулы Эйнштейна о связи массы и энергии (Е = тс2) является ошибочным. Выше было показано (п. 3.5), что дефект массы Дт возникает в процессе ядерного синтеза (объединения нуклонов в составе ядра) или в процессе деления ядра в результате перестройки эфирных полей нуклонов и ядер. Ho выделяемая при этом энергия образуется не за счет перехода массы в энергию, а в результате перехода потенциальной энергии эфитонов в кинетическую энергию при их выделении из состава ядра. Сокращение продольного размера тела в направлении его движения. Этот эффект якобы подтверждается результатами опытов Майкельсона. Ho эти результаты говррят только о том, что «эфирный ветер» не был обнаружен то ли из-за его отсутствия, тр ли из-за сокращения продольных размеров тела. Сокращение размеров тела нельзя установить никакими опытами, ибо любая «линейка» должна сокращать в той же пропорции, что и тело.
Таким образом, все результаты экспериментов, которые приводятся в качестве доказательств правильности СТО, легко объясняются в рамках эфирной гипотезы.

Abstract. This article is devoted to mathematical aspects of the special and general relativity theories, Lorentz transformations and curvature of space-time. Isotropy and flatness of space have been experimentally proved but the theory different determination of space-time properties. Reasons of such disagreement are hidden in mathematical tools and methods used by the theory. But they are totally depend on basic axioms – light velocity constancy and continuity of space. And without necessary explanations it is impossible to accept the point of view that there are no problems with consistency of the SRT and GRT axioms.

Как известно, специальная теория относительности основана на двух, считающихся экспериментально доказанными, фактах – конечности скорости света и ее постоянства в различных инерциальных системах отсчета (независимости скорости света от скорости его источника). Именно эти условия, по общему мнению, не позволяют использовать в механике преобразования Галилея при переходе от одной инерциальной системы отсчета к другой. И, как следствие, за основу математических принципов описания процессов движения принимается релятивистский принцип относительности, выраженный через преобразования Лоренца. Очевидность этих преобразований кажется настолько безупречной, что не должно, казалось бы, и возникать сомнений в правомерности выводов, вытекающих из применения в физической теории принципа лоренц-инвариантности.

Действительно, в соответствии с обоими постулатами специальной теории относительности для двух инерциальных систем отсчета К и К ´, можно записать:



В этих уравнениях компоненты скорости света при условии прямолинейности его распространения:



Отсюда:


Здесь: .

Казалось бы, что стоит только произвести очевидные преобразования и мы получим правила перехода от одной инерционной системы координат к другой инерционной системе в виде преобразований Лоренца.

Однако не все так просто.

Преобразования Лоренца определяют соотношения координат различных систем в зависимости от скорости перемещения начал координат указанных систем относительно может быть легко определена. Но именно в данном допущении теории и кроется ее самая большая проблема.

Пусть начало координат системы К является неподвижным, а начало координат системы К ´, движущейся относительно первой системы, находится на расстоянии r в некоторый момент времени t =0, зафиксированный по часам, находящимся в начале координат системы К . За некоторое время dt начало системы К ´ пройдет путь dl и сместится на расстояние dr . Наблюдатель, размещенный в начале системы К , по достижении периода времени dt увидит, что путь, пройденный началом системы К ´, не будет равен dl , так как информация о положении начала системы координат системы К ´ поступает к указанному наблюдателю с некоторым опозданием, вызванным конечностью скорости света. И наблюдатель, покоящийся в системе К , может выбрать два способа определения скорости перемещения начала координат системы К ´.

Первый из этих способов заключается в том, что в каждой из точек системы К (или некоторых реперных точках) устанавливаются свои часы. Показания всех этих часов синхронизируются таким образом, что наблюдатель, находясь в начале координат системы К , видит одинаковое время на всех часах одновременно, т.е. показания часов в любой конкретной точке сдвинуты по отношению к показаниям часов в начале координат на время, необходимое для достижения фотоном, испущенным в указанной точке, начала координат системы К . В этом случае наблюдатель, используя свои часы, определяет скорость перемещения начала координат системы К ´ как:


Данная скорость не зависит от взаимного положения начал координат систем К и К ´ и является универсальной и абсолютной величиной, что связано с как бы мгновенным переносом информации о перемещении начал этих координат. Единственной проблемой такого метода определения скорости является необходимость иметь в каждой точке системы координат К свои часы.

Второй способ заключается в оценке видимого наблюдателем в системе К перемещения начала координат системы К ´ по своим единственным часам:


Из этого выражения следует, что наблюдаемая скорость зависит от выбора начала координат системы К (взаимного положения начал систем К и К ´ и направления их движения). В данном случае собственно вид функции не является существенным для вывода преобразований инерциальных систем координат, так как наблюдаемая скорость не является универсальной величиной, необходимой для использования в глобальных преобразованиях Лоренца. Скорость же, определяемая по первому способу, безусловно, приемлема для использования в преобразованиях Лоренца, но, к сожалению, не является величиной наблюдаемой (экспериментально определяемой).

Еще одним важным аспектом анализа соответствия координат одной инерциальной системы координатам другой инерциальной системы является следующее.

Инерциальная, в понимании специальной теории относительности, система координат К ´ представляет собой пространство, построенной на множестве точек, неподвижных относительно центра данной системы. Прямолинейная в этой системе траектория движения фотона может быть определена наблюдателем, связанным с началом лабораторной системы координат К , как набор точек, движущихся одновременно с движением инерциальной системы К ´. В этом случае, в полном соответствии с первым постулатом специальной теории относительности, скорость перемещения фотона, испущенного из начала координат системы К ´, вдоль движущейся для наблюдателя из системы К прямой определяется совершенно однозначно как векторная сумма скорости движения системы К ´ и скорости света, испущенной неподвижным источником. Разумеется наблюдаемая (если так можно выразиться в отношении фотона) траектория движения этого фотона не может быть видима как прямая линия, так как особенности определения наблюдаемой скорости движения объектов (точек системы координат К ´) не позволяют через непосредственное наблюдение описать эту траекторию именно как прямую линию.

В соответствии с изложенным, теоретических оснований, подтверждающих необходимость введения второго постулата специальной теории относительности, не существует.

Не дает таких оснований и экспериментальная проверка зависимости (или отсутствия таковой) скорости света от скорости его источника. Так. в работе приведено описание опыта по проверке зависимости скорости света, испускаемого движущимися и неподвижными атомами вещества, подвергаемого облучению, в процессе их перехода от возбужденного к невозбужденному состоянию. Анализируя полученные результаты, авторы пришли к выводу о независимости скорости света от скорости движения его источника.

Однако данный вывод основан на весьма неожиданном и досадном логическом недоразумении.

Действительно, авторы полагают, что интервал между временем прохождения одного и того же расстояния фотоном, испущенным движущимся атомом, и временем для фотона, испущенного неподвижным атомом, определяется в зависимости от скорости движения возбужденного атома по формуле:


Но, если следовать приведенному в данной работе описанию опыта, эта зависимость выражается в виде:


Измеренное в ходе данного эксперимента значение интервала:


Таким образом, экспериментально полностью подтверждена правомерность баллистической зависимости скорости света от его источника (баллистический принцип Ритца), а, следовательно, и несостоятельность формулировки второго постулата специальной теории относительности.

В соответствии с изложенным, мы можем определить первый парадокс специальной теории относительности как противоречие условия абсолютного постоянства скорости света в различных системах координат (второй постулат СТО) необходимому для выполнения первого постулата СТО условию зависимости скорости света при его наблюдении внешним неподвижным, или движущемся с иной скоростью наблюдателем.

Этот парадокс является весьма существенным при описании эффекта Доплера, который возникает при определении неподвижным наблюдателем частоты света, движущимся источником. Данная задача в принципе не решалась при создании СТО, поэтому интересно проследить к каким последствиям приводит применение постулатов СТО к решению данной задачи.

В литературе используются два метода описания эффекта Доплера – геометрический и волновой.

При геометрическом подходе [см., например, 81] описание эффекта Доплера основывается на утверждении, что длина волны, испускаемой движущимся источником, определяется как отрезок, измеряемый между положением точки, соответствующей первому периоду волны, определенному от момента испускания волны, и точки соответствующей положению источника излучения в момент времени, равный периоду волны. Однако такое утверждение приводит к тому, что для сохранения процесса излучения как волнового процесса необходимо, чтобы точки волновой функции, находящиеся дальше точки, соответствующей первому периоду, сдвигались по направлению к источнику со все возрастающей и не имеющей предела скоростью. Такое условие противоречит как первому, так и второму постулатам СТО. Хотелось бы, конечно, верить, что существуют убедительные объяснения данному противоречию.

Волновой подход кажется значительно более убедительным, но так ли это?

Рассмотрим данный подход более внимательно.

В работе при описании эффекта Доплера использован прием замены двух источников излучения и одного приемника на один источник и два приемника, один из которых движется, а второй неподвижен. Вроде бы стандартный математический прием, но он коренным образом меняет методологию описания самого явления, так как, заменяя две волны на одну, мы уже можем вводить понятие совпадающей фазы в точке, в то время как для двух различных волн совпадение фазы в точке является случайностью, и уж точно не обязательным фактом.

Таким образом, известные из литературы объяснения эффекта Доплера являются неубедительными, и ситуация с описанием данного эффекта была бы совсем печальной, если бы с помощью СТО не удалось найти приемлемое объяснение. И оно действительно есть.

Прежде всего необходимо отметить, что эффект Доплера проявляется в двух процессах: изменение частоты волны, отраженной от движущегося объекта, и изменение частоты волны, генерируемой движущимся объектом, по сравнению с частотой волны, генерируемой неподвижным объектом. Многочисленные эксперименты доказывают, что изменение частоты волны происходит в обоих процессах по одному и тому же закону, то есть, нет необходимости различать эти процессы.

Параметры электромагнитной волны, испускаемой неподвижным источником и принимаемой неподвижным же приемником, связаны отношением:


Параметры волны, испускаемой движущимся со скоростью V источником и фиксируемой неподвижным приемником, определены выражением:


Длина волны является некоторым отрезком, особенности описания которого неподвижным наблюдателем, определены правилами специальной теории относительности, а именно сокращением длины движущегося стержня. Поскольку угол наблюдения в общем случае не совпадает с углом, под которым движется излучающий объект по отношению к наблюдателю, то для упрощения примем, что вектор V направлен вдоль оси ОХ системы координат, в центре которой расположен приемник (наблюдатель). В этом случае лоренцево сокращение длины волны распространяется только на проекцию указанного отрезка на ось ОХ :





Поскольку мы должны учесть угол наблюдения, то:



Таким образом:


Наблюдаемая частота волны, генерируемая движущмся источникам:


Самое удивительное, что формулы для определения продольного и поперечного эффектов Доплера совпадают с приводимыми в литературе зависимостями.

Не менее впечатляющая ситуация имеет место и с объяснением эффекта Вавилова-Черенкова.

Как известно, данный эффект был обнаружен в процессе изучения свойств оптически прозрачных сред, находящихся под воздействием жесткого излучения, и проявляется в возникновении слабого свечения. Данное свечение описывается в в виде конуса света, испускаемого Оже-электронами, движущимися со скоростями, превышающими скорость света в среде, и направленного по направлению движения этих электронов. Сущность классического объяснения эффекта Вавилова-Черенкова [см., например, 86] заключается в том, что излучение свободных электронов гасится по всем направлениям, кроме образующих светового конуса (с вершиной на каждом из этих электронов), вдоль которых выполняется условие равенства величины скорости света в среде проекции скорости электрона на образующую. В данном объяснении все кажется логичным, кроме того, каким образом свет может распространяться вперед по направлению движения электрона (это касается не только направления вдоль образующих конуса), так как для этого электрон должен быть оптически прозрачным. Кроме того, непонятно, каким образом жесткое излучение подпитывает электрон, следствием чего и является возникновение Вавилова-Черенкова. Ведь движущийся со сверхсветовой скоростью электрон может взаимодействовать только с теми квантами жесткого излучения, который он нагоняет. И, если третий закон Ньютона и второй постулат СТО верны одновременно, то для того, чтобы эффект Вавилова-Черенкова наблюдался, необходимо, чтобы конус света, излучаемого электроном, был направлен не по ходу движения электрона, а наоборот против этого хода. Но в этом случае классическое объяснение эффекта Вавилова-Черенкова является несостоятельным. Однако, если наблюдаемая внешним наблюдателем скорость света будет равна векторной сумме скорости света (по отношению к неподвижному источнику) и скорости этого источника по отношению к неподвижному наблюдателю, то все становится на свои места. И, если использовать приведенные обозначения, то условие возникновения светового конуса излучения Черенкова должно выглядеть не в виде:


а в виде:


В этом случае конус света по отношению к излучающему электрону будет направлен против хода движения последнего, что в совокупности с налетающими на электрон квантами жесткого излучения обеспечивает выполнение третьего закона Ньютона и существование собственно эффекта Вавилова-Черенкова.

Таким образом, первый парадокс специальной теории относительности о несовместимости первого и второго постулатов СТО разрешим корректировкой второго постулата.

Второй парадокс СТО заключается в том, что уравнения Максвелла инвариантны относительно преобразований Лоренца, хотя применение этих преобразований как истинно пространственно-временных трансформаций при размещении инерциальных систем координат на различных фотонах принципиально невозможно.

Для того, чтобы разобраться с данным парадоксом, необходимо, прежде всего, обратить внимание на то, что же собственно является объектом, описываемым системой уравнений Максвелла. Совершенно очевидно, что этот объект представляет собой обобщенную совокупность двух видов электромагнитного поля – поля, окружающего его источники (заряды и токи), и поля электромагнитного излучения, не содержащего источники последнего. И, если для первого типа полей проблем с применением преобразований Лоренца не возникает, то поля второго типа не могут подчиняться преобразованиям Лоренца. Дело в том, что для полей второго типа неприемлема модель, использующая пробный фотон для установления соотношения расстояния до выбранной точки и времени нахождения фотона в пути до нее. Можно, конечно, сделать вид, что это непринципиально и выражение инвариантного интервала сохраняется и для этого типа полей, но тогда надо определить, каким образом замерять время и скорость движения инерциальных систем координат, что сразу же вернет нас к проблеме, какова модель построения данного интервала. Таким образом, преобразования Лоренца покрывают лишь часть области применения уравнений Максвелла.

Итак, что же делать, если стоит задача построения инерциальных систем координат на фотонах?

Прежде всего, обратим внимание на то обстоятельство, что инвариантный интервал СТО, при некоторых условиях, которые будут рассмотрены далее, является правилом синхронизации хода часов в различных точках одной и той же системы координат. Данное правило может быть легко преобразовано в правило определения (сохранения) квадрата «фазы бегущей волны» (определение дано в кавычках, поскольку физического смысла не имеет, но является схожим по математическому определению с выражением фазы бегущей волны электромагнитного излучения). Однако, так как из определения понятия бегущей волны известно совершенное иное линейное, а не квадратичное, правило установления фазы волны, то совершенно однозначно можно утверждать, что интервал СТО в принципе не может быть использован как инструмент для построения инерциальной системы координат, базирующейся на фотоне, и нам следует опираться на линейный интервал. В этом случае можно отказаться от модели с пробным фотоном и использовать мгновенный мысленный перенос из одной точки в другую, что дает возможность отнести преобразования Галилея к средствам описания физических явлений с использованием систем координат, базирующихся на частицах с нулевой массой покоя. А если мы имеем дело с явлениями типа излучения Черенкова, то системы координат, построенные на частицах, движущихся со сверхсветовыми скоростями, очень схожи с определением пространств де Ситтера.

Таким образом, одних лишь преобразований Лоренца явно недостаточно для всеобъемлющего описания реальных физических процессов в соответствии с принципами, определенными первым постулатом специальной теории относительности.

Но самой большой загадкой СТО является релятивистский характер импульса, определяемый глобальной зависимостью:


Считается, что данная зависимость по одним источникам является следствием СТО и возникает автоматически, если вместо координатного времени используется время собственное. По другим же источникам данная зависимость является экспериментально установленным фактом, выявленным в ходе исследований движения заряженных частиц в магнитном поле.

Рассмотрим данные обоснования релятивистской зависимости импульса.

Прежде всего, отметим, что время собственное при обсуждении положений специальной теории относительности и преобразований Лоренца задается в двух формах – интегральной и дифференциальной, практически повсеместно используемой в современной литературе. В то же время введение в теорию времени собственного не диктуется ни необходимостью соблюдения постулатов специальной теории относительности, ни условиями, требуемыми для вывода преобразований Лоренца, так как для всего этого достаточно фиксации прямолинейности траектории движения фотона. В этом случае время собственное в любой его форме должно иметь нулевое значение. Скорее всего, причиной появления интервала между событиями, а в последующем и времени собственного являлось требование обеспечения математической красоты при описании положений СТО. Но уж, коль скоро, данные термины появились в теории, то им стали придавать иное значение, чтобы распространить на время координатное свойство непрерывности, а не ограничивать его только временем нахождения в пути от начала координат до некоторой заданной точки пробного фотона, испускаемого в центре системы координат. Такой подход, конечно, может быть использован, если в теории имеется потребность в использовании моментов или временных отрезков, меньших или больших времени нахождения пробного фотона в пути до заданной точки. Однако в научной литературе отсутствуют (возможно, автору просто не удалось обнаружить) какие-либо упоминания о существовании такой потребности. Тем не менее, раз уж понятие времени собственного введено в теорию, необходимо обсудить, к каким последствиям приводит это введение.

Рассмотрим, во-первых, интегральную форму задания времени собственного (интервала между событиями). Совершенно очевидно, что использование времени собственного позволяет установить показания часов, размещенных в разных точках пространства, таким образом, чтобы один наблюдатель видел на всех часах (в момент синхронизации) одни и те же показания. Но, так как этого недостаточно, чтобы вместо множества часов наблюдатель мог использовать только одни часы, необходимо, чтобы ход всех часов совпадал с ходом часов наблюдателя, которыми он измеряет время координатное (время нахождения в пути пробного фотона и время перемещения начал различных инерциальных систем координат). А вот для этого условия время собственное как функция от координат пространства и времени координатного вряд ли приемлемо. Это вытекает из того, что область определения этой функции включает как мнимые числа, в случае , так и действительные числа при . Кроме того, в случае линейности пространственно-временных координат ход часов, использующих время собственное, не является линейным и совпадающим с ходом часов, использующих время координатное:


Вряд ли такие часы удобны для определения скорости. Обратим также внимание на то обстоятельство, что дифференциал функции собственного времени, заданной в интегральной форме, не совпадает с определением дифференциала собственного времени, используемого в определении инвариантного интервала СТО в форме:


В связи тем, что мы имеем два противоречащих друг другу определения одной и той же величины, необходимо выяснить, какое из этих определений следует использовать при замене координатного времени временем собственным в релятивистской зависимости импульса. То, что интегральная форма собственного времени для этих целей не подходит, только что установлено выше, а может ли быть использована для указанных целей дифференциальная форма, попробуем сейчас разобраться.

Релятивистская форма 4-вектора энергии-импульса выглядит следующим образом:


Здесь:



Следовательно:


Совершенно очевидно, что релятивистская зависимость импульса получена не в результате полной замены координатного времени временем собственным, так как в этом случае скорость должна быть выражена в виде , и мы имеем дело некоторой вновь вводимой аксиомой, которая позволяет получить желаемый результат. Также совершенно очевидно, что данная аксиома вроде бы вытекает из условия совпадения хода часов, используемых для замера времени координатного, с ходом часов, замеряющих время собственное, при отсутствии пространственных перемещений. Но дело в том, что при отсутствии последних отсутствует и необходимость использования модели с пробным фотоном, то есть замера времени координатного. А в этом случае вряд ли можно использовать инвариантный интервал в дифференциальной форме при анализе преобразований координат инерциальных систем. Таким образом, кроме одного желания должны же быть хоть какие-нибудь теоретические или экспериментальные обоснования, позволяющие согласиться с необходимостью введения новой аксиомы. К огромному сожалению никаких теоретических обоснований этому в научной литературе обнаружить не удается, и остается только уповать на существование экспериментальных фактов. Но и здесь нас ждет разочарование, поскольку, если речь идет об опытах заряженными частицами в магнитном поле, наблюдать релятивистскую зависимость импульса этих частиц невозможно в принципе по той причине, что в данной зависимости используется ненаблюдаемая абсолютная скорость.

Таким образом, как утверждение о возможности теоретического обоснования релятивистского характера импульса, так и утверждение об экспериментальном обнаружении данного феномена являются каким-то досадным недоразумением. А не совсем понятное поведение импульса, вероятнее всего, вызвано использованием при анализе результатов эксперимента именно наблюдаемой скорости, которая, в случае движения наблюдаемого объекта по окружности и получения сведений о времени и координатах наблюдаемого объекта с помощью испускаемого им излучения, будет весьма близка к выражению:


Однако это всего лишь достаточно случайное совпадение, а не устойчивая и универсальная закономерность.

Имеют ли причины возникновения критики СТО отношение к общей теории относительности?

Как оказывается, имеют самое непосредственное значение.

Весьма показательна в этом смысле аналогия с наблюдателем, находящимся в свободно падающем лифте, иллюстрирующая принцип эквивалентности, являющийся одним из базовых для общей теории относительности.

Считается, что наблюдатель в падающем лифте не может экспериментально обнаружить, падает ли его лифт, или находится в состоянии покоя, определяемом отсутствием гравитационного поля вне лифта. Такая аналогия позволяет ввести понятие локально-инерциальных систем координат, что упрощает решение задач, связанных с гравитационным взаимодействием.

В соответствии с предложенной аналогией, мы имеем дело с двумя замкнутыми системами, ограниченными непрозрачными стенками. Свободно падающая система находится под воздействием гравитационного поля, влияние которого на внутреннюю неподвижную относительно лифта систему считается отсутствующим. Если в этих условиях применить принцип сравнения интервалов с помощью пробных фотонов, то можно констатировать следующее. Для неподвижного наблюдателя фотон, испущенный внутри свободно падающей системы координат и имеющий в этой системе прямолинейную траекторию и постоянную скорость, должен воспринимать не только скорость (как линейную, так и угловую), но и ускорение центра координат свободно падающей системы, из которого испускается пробный фотон, в любой точке траектории движения указанного фотона. Только в этом случае свободно падающая система координат может восприниматься размещенным в ней наблюдателем как лабораторная. Но, учитывая, что ускорения и скорости, вызванные гравитационным взаимодействием, зависят от координат (расстояния до центра гравитационных масс), данное условие является принципиально невыполнимым.

Считается, что в данной ситуации принцип эквивалентности свободно падающей в гравитационном поле системы координат и лабораторной системы координат, не подверженный действию гравитационного поля, может быть справедлив, если мы имеем дело с точками бесконечно малой окрестности начала координат (для начал координат обеих систем указанный принцип безоговорочно справедлив). И это действительно могло бы быть так, если бы второй постулат специальной теории относительности был справедлив в его классической формулировке. А так как дело не только в бесконечно малых искажениях, вносимых в координатную сетку свободно падающей системы в связи с наличием гравитационного поля, являющегося по своей природе центральным, но и в том, что при переходе от одной точки к другой пробный фотон, испущенный в начале координат, должен менять в ходе своего движения скорость. Это вызвано тем, что искажения свободно падающей системы координат являются смещениями позиций ее точек от первоначального положения. А раз есть смещения, то они могут быть описаны их скоростью, что влечет за собой изменение относительной скорости пробного фотона. За более подробными объяснениями по данному вопросу можно обратиться к работе , где в § 10, главы 6 изложен принцип воздействия гравитации на физические системы. Этот принцип не только может, но и должен соблюдаться при формировании правил построения локально-инерциальных систем координат. И, если этот принцип дополнить требованиями конечности скорости света и влияния положения наблюдателя, то о локально-инерциальных системах координат можно говорить только как о пространствах, построенных на единичном множестве, т.е. содержащих одну единственную точку. Таким образом, для локально-инерциальных систем координат имеет смысл изменение только временной, а не пространственных координат. И в этом случае вряд ли можно признать удачным определения метрического тензора и аффинной связности, а также уравнения свободного падения (движения) в произвольном поле в произвольной системе координат в виде:




Этот факт, собственно, не является секретом для научного сообщества (см., например, § 3 главы 3 и указанный выше § 10 главы 6, ). Таким образом, так и хочется вслед за Стивеном Вейнбергом воскликнуть «что же такое локально-инерциальная система координат».

Тем не менее, если принять за аксиому возможность существования свободно падающего линейно-нормированного пространства , в котором выполняется принцип баллистического сложения скоростей, определяемых ускорением центра системы координат, описывающих данное пространство, то у нас возникает еще одна проблема. И проблема эта заключается в необходимости принятия в качестве независимой переменной не физического времени t , а собственного времени τ . Причем данная вновь вводимая переменная должна не только входить в состав инвариантного интервала, но и обеспечивать возможность определения в этом пространстве абсолютных скоростей и ускорений по правилу определения линейных производных. Кроме того, нам необходимо обеспечить сохранение условия постоянства скорости света, испускаемого неподвижным в источником. И, если свести все эти условия воедино, то нам остается только найти такие часы, по которым исчисляется время нахождения пробного фотона в пути. Причем это должны быть именно часы в традиционном понимании, а не шляпа фокусника, выдающая любой желаемый результат.

При таком наборе взаимно противоречивых аксиом любая теория была бы обречена на провал, но в том то и преимущество общей теории относительности, что вовсе не эти аксиомы являются определяющими для ОТО. В принципе она основана на двух предположениях: искривлении плоского пространства, отождествляемого с локально-инерциальной системой координат, в присутствии гравитационных масс и свободы выбора лабораторной системы координат в любой точке гравитационного поля. Последнее связано с тем, что невесомость физического объекта в отсутствие гравитационных тел может быть признана эквивалентной невесомости свободно падающего в гравитационном поле объекта, фиксируемой в центре его масс. Оба этих предположения может быть и не слишком удачным образом описаны математически, но поскольку результаты их использования удовлетворительно описывают реальные физические явления, то научное сообщество предпочитает мириться с недостатками математического обоснования указанных предположений, а не оспаривать их по такому считающемуся несущественным поводу. Конечно, можно отказаться от идеи использования свободно падающей системы координат в пользу плоского пространства, лишенного гравитационного поля, и, хотя при этом возникают свои проблемы (например, проблема имбединга), но тогда хоть сохранится аппарат общей теории относительности. Скорее всего именно данное соображение и помогает отгонять критические мысли о несовершенстве идей, послуживших основанием для создания этой теории.

Обратим внимание, что оба вышеуказанных предположения являются независимыми друг от друга, в научных исследованиях одновременно совместно в общем-то не применяются, и поэтому могут быть проанализированы порознь.

В настоящее время наиболее признанным определением сущности искривленного пространства является выражение инвариантного интервала в виде:


Данное выражение трактуется как изменение свойств (мер длины) пространства в присутствии гравитационных масс при сохранении скорости света.

Но если внимательно рассмотреть уравнение инвариантного интервала ОТО, можно найти два способа его объяснения – математический и физический. Первый основан на геометрических методах решения физических задач и полностью реализован в аппарате общей теории относительности и полевых теориях. А вот второй способ, основанный на возможности изменения скорости света в присутствии гравитационных масс, по непонятным причинам полностью исключен из рассмотрения в физических теориях. Однако именно второй способ имеет четкое физические обоснование, поскольку в оптике широко известно явление преломления света, вызванное уменьшением скорости распространения электромагнитных волн в физической среде; а присутствие в выражении интервала члена a 2 (t ) может трактоваться и как наличие в природе масштабного фактора и как наличие у вакуума показателя преломления, величина которого в присутствии гравитационных масс отлична от величины этого параметра в отсутствии указанных масс.

Для того, чтобы сделать правильный выбор, какая из трактовок является удовлетворительной, необходимо разобраться, что является причиной искривления пространства – физическое явление или результат математического описания гравитационного взаимодействия.

Для этого необходимо, прежде всего, понять, о каком именно пространстве идет речь – о математическом (мысленная сущность), или о физическом (реальная сущность) гравитационном поле. То, что в уравнении поля Эйнштейна объединены физические и геометрические величины, еще не свидетельствует о физической природе искривления пространства, так как физические члены этого уравнения относятся не к собственно пространству, а к включенным в него источникам гравитационного поля. И корректным, с позиции сохранения непрерывности системы координат, на которой базируется формулировка геометрических членов уравнения поля, является условие отсутствия размеров у источников поля – стандартная модель элементарных частиц. Отметим, что данное условие является обязательным для любого физического поля при его математическом описании известными на настоящий момент методами геометрического построения координатного пространства.

Если же источник поля имеет размеры, то начало связанной с ним системы координат оказывается внутри отличной от собственно поля физической сущности, то есть иного пространства. В этом случае возникает проблема исключения из рассмотрения внутреннего пространства и его замены на внешнее. В общей теории относительности данная проблема проявляется при возникновении в решениях уравнения поля параметра MG/c 2 , указывающего на существование некоторого размера (радиуса), внутри которого уравнения общей теории относительности вряд ли возможно применить. То есть сама же теория вступает в противоречие с принятыми при ее создании аксиомами о непрерывности геометрического пространства и стандартной модели элементарных частиц. Наиболее наглядно данное обстоятельство представлено в гармонической и изотропной метриках решения Шварцшильда.

Эти метрики показывают, что для того, чтобы хоть как-то обеспечить соответствие математической модели гравитационного поля физической реальности при условии сохранения непрерывности координатной системы, можно через понятие метрического тензора ввести представление об «искривлении» пространства в присутствии гравитационных масс как способ отображения пространства с «дырками» на непрерывное пространство. Но в этом случае искривленное пространство уже не является физической сущностью, а представляет некую адекватную математическую модель гравитационного поля.

Таким образом, эффект искривления возникает уже на этапе математического описания гравитационного взаимодействия и, в принципе, не требует дополнительного физического обоснования, так как является следствием принятых аксиом, а не свойств реальной физической сущности.

В то же время существуют такие физические явления, которые, казалось бы, подтверждают существование реального искривления пространства – аномальное смещение периодов орбит небесных тел в гравитационном поле и смещение позиций небесных тел при их наблюдении вблизи Солнца. И с таким выводом можно было бы безоговорочно согласиться, если бы не существовало иных, чем искривление пространства, объяснений указанных явлений.

Однако такие объяснения существуют и мы можем рассмотреть их на примере аномального смещения перигелия Меркурия и смещения траектории движения фотона вблизи солнечного диска.

Указанные явления можно рассматривать как следствие существования некоторого характерного для любого физического объекта, обладающего массой, размера , внутри которого гравитационное поле действует по иным законам, чем вне его. Этот размер, в принципе, можно считать равным радиусу сферы, плотно заполненной только веществом физического объекта без полевой фазы материи. В этом случае при решении физических задач мы имеем различные положения нуля системы координат. Для стандартной модели ноль базируется в центре масс физического объекта, а для системы координат, базирующейся только на полевой компоненте материи, этот ноль располагается на поверхности сферы с радиусом , который можно определить как радиус вырождения гравитационного поля и вычет в плоском пространстве. То есть мы имеем дело с «плавающим нулем». Такое свойство позволяет ограничить область действия известных законов гравитации с помощью параметра «показателя преломления (сгущения) вакуума»:


Здесь r – расстояние, измеряемое от центра координат стандартной модели, то есть истинно пространственное расстояние.

Для случая вращения Меркурия вокруг Солнца можно заметить, что мгновенные угловые скорости различны в стандартной и полевой системах координат, а их соотношение определяется зависимостью:


Здесь знаком штрих обозначен угол поворота в полевой системе координат.

Используя свойства эллипса легко найти выражение:


Здесь a и а – параметры эллипса.

Подстановка в предыдущее выражение и его интегрирование дают:


За один оборот вокруг Солнца угол между прямыми, проходящими через ноли стандартной и полевой систем координат соответственно и точку перигелия Меркурия, составит:


Это выражение с учетом результата, полученного в ходе астрономических наблюдений за Меркурием, позволяет определить радиус вырождения в виде:


Отклонение луча света вблизи гравитационных масс можно объяснить движением фотона в среде с переменным показателем преломления:


Тогда отклонение луча света вблизи солнечного диска будет равно:


Полученное выражение в полтора раза превышает предсказание общей теории относительности, но очень хорошо согласуется с наибольшим измеренным углом отклонения луча света (2,73´´±0,31´´).

Очевидно практически полное совпадение полученных результатов с опытными данными и близкое к результатам, предсказанным общей теорией относительности.

Однако интерпретация гравитационного взаимодействия с помощью физического вакуума имеет весьма существенный недостаток, заключающийся в том, что эффективный радиус дырки в вакууме определяется в виде . Именно численный коэффициент в данном выражении является проблемным, поскольку непонятны причины, по которым вся масса Солнца не может быть сосредоточена в дырке, не содержащей вакуумной компоненты и имеющей величину . Является ли данная величина характерной только для Солнца, или ее выражение универсально для любой гравитационной массы – это могут показать только экспериментальные исследования.

В то же время модель физического вакуума позволяет объяснить самую большую загадку общей теории относительности – загадку конечности Вселенной и ее непрекращающегося расширения, подтверждением которых считается красное космологическое смещение. Причем этот процесс описывается путем использования понятий единицы собственного объема, изменяющейся в зависимости от изменения размера Вселенной, и единицы координатного объема, остающейся неизменной в сопутствующей системе координат (см., например, §§ 2 и 3 главы 14, ). Введение этих понятий необходимо для обоснования утверждения, что «типичные галактики имеют постоянные координаты» и, следовательно, можно разделить переменные в уравнении:


Данное уравнение описывает движение фронта электромагнитной волны, и, если переменные разделяются, то мы получаем выражение для параметра красного смещения в виде:


То есть в ограниченном расширяющемся пространстве действительно наблюдается красное космологическое смещение.

Однако, не все так просто, поскольку в соответствии со свойствами сопутствующей системы координат (§ 9 главы 6, ) невозможно обеспечить полную независимость геометрических координат от времени. Тем самым отнесение причин возникновения красного смещения только на зависимость масштабного фактора R (t ) от времени, представляется весьма искусственным. Но ничего иного общая теория относительности не предлагает.

Если же мы используем понятие показателя преломления вакуума, как характеристику гравитационного взаимодействия, то можно найти и иное объяснение красного космологического смещения.

Пусть – параметры волны, испускаемой отдаленным источником в момент испускания. Если при прохождении волны до наблюдателя эти параметры меняются, то можно записать выражения:




Последнее выражение является ожидаемым показателем преломления вакуума, определенным через расстояние от источника до наблюдателя и радиус вырождения вакуума, рассчитанный по массе источника излучения:


Но если источник достаточно удален, то можно предположить, что на излучении оказывает влияние не только масса излучающего источника, но и вся масса материи, включенной в сферу радиусом – расстоянием от испущенного фотона до центра этой массы в любой выбранный момент времени, что соответствует принципу Маха. Тогда:




Поскольку нет причин для изменения длины волны и ее частоты в различной степени при изменении скорости света, то:


Следовательно:


Как относиться к последнему выражению?

Во-первых, влияние окружающих масс на движущийся фотон никак не может быть отнесено к следствиям эффекта Доплера. А, во-вторых, это влияние не тождественно гравитационному красному смещению, действие которого зависит от изменения потенциалов гравитационного поля. Это следует из того, что при прохождении через область действия гравитационного поля одной массы в область действия другой массы эффект гравитационного смещения от первой массы исчезает (нивелируется, так как в начале и конце пути через поле первой массы гравитационные потенциалы равны).

Скорее всего указанное выражение определяет эффект, подобный эффекту разлета галактик за счет расширения пространства.

Действительно, если бы мы имели однородное распределение вещества в пространстве, то свет должен был бы проходить одно и то же расстояние с меньшей скоростью, чем в пустом вакууме. Это можно выразить как увеличение длины пути фотона с постоянной скоростью в пустом пространстве при сравнении с заполненным веществом вакууме. Таким образом, «расширение» пространства может быть всего лишь действием принципа Маха для стационарной и бесконечной Вселенной.

С помощью данного метода можно оценить и границы видимости излучающих объектов в пространстве, радиус видимости которых при однородном распределении вещества определяется следующим образом:


Отсюда:


Обратим внимание, что классическое выражение для космологического смещения в пространстве с однородной плотностью распределения вещества определено выражением:


Это дает нам значение предельного радиуса видимости:


Таким образом, реликтовое излучение вполне убедительно может быть объяснено не только в рамках теории большого взрыва, но перекрытием (экранированием) внешнего излучения, вызванным эффектом Ольбертса.

Есть еще один момент, который может подтвердить или опровергнуть модель вакуума с дырками – это гравитационное смещение частоты излучения. Дело в том, что излучение в гравитационном поле подвержено действию взаимно противоположных эффектов – изменению гравитационного потенциала и изменению показателя сгущения вакуума (чем не действие пары сил притяжения-отталкивания!).

Что же касается второго основополагающего предположения, на котором базируется общая теория относительности, а именно принципа независимости выбора лабораторной системы координат, то это предположение скорее дань специальной теории относительности, чем необходимость. Действительно, трудно себе представить ситуацию, в которой две различные свободно падающие системы координат необходимо сравнивать в условиях различных ускорений, вызванных действием одного единственного гравитационного поля. А если речь идет о том, что в одном и том же гравитационном поле одна свободно падающая система на момент ее определения имеет нулевую начальную скорость, в то время как другая система – некоторую (неизвестно каким образом появившуюся) ненулевую скорость, то для введения этого принципа вовсе нет необходимости, так как можно обойтись первым постулатом специальной теории относительности. А все недоразумения, связанные с принципом эквивалентности, могут быть объяснены конечностью скорости света и методами измерения временных отрезков.

Таким образом, вопрос о происхождении Вселенной то ли в результате инфляционных процессов, то ли столкновения бран, может быть дополнен также и предположением об ограничении наблюдаемости в непрерывном и бесконечном пространстве, что не требует привлечения теории большого взрыва. Безусловно, в этом случае необходимо осознавать, что мы меняем сложную проблему о том, что было до большого взрыва, на не менее сложную проблему – каким образом звездам и галактикам удается существовать бесконечно долго. Но на вопрос: «Кто от кого убегает, и убегает ли вообще?», хотя бы из любопытства, найти ответ все же необходимо.

Список литературы

  1. Aders E., Lee B.W., Gauge Theories, Phys. Rep., 9C, 1 (1973)
  2. Aharonov Y., Casher A., Suskind L., Phys. Rev., D5, 988 (1972)
  3. Aitchison I.J.R., Relativistic Quantum Mechanics Macmillan, London, 1972
  4. Altarelli G., Partons in Quantum Mechanics? Phys. Rep., 81C, 1 (1982)
  5. Arnison G. et al., Intermediate vector boson properties at the CERN super proton synchrotron collider, Geneva, CERN, 1985
  6. Bernstein J., Spontaneous Symmetry Breaking, Gauge Theories and All That, Rev. Mod. Phys., 46, 7, (1974)
  7. Bilenky S.M., Hosek J., Glashow-Weinberg-Salam Theory of Electro-Weak Interactions and the Neutral Currents, Phys. Rep., 90C, 73 (1982)
  8. Bogush A.A., Fedorov F.I., Universal matrix form of first-order relativistic wave equations and generalized Kronecker symbols, Minsk, 1980
  9. Bogush A.A., Fedorov F.I., Finite Lorentz transformations in quantum field theory, Rep. Math. Phys., 1977, Vol.11, 1
  10. J.R.Bond et al., The Sunyaev-Zel’dovich Effect in CMB-Calibrated Theories Applied to the Cosmic Background Imager Anisotropy Power at , Astrophysical Journal, 626:12-30, 2005, June 10
  11. Carruthers P., Introduction to Unitary Symmetries, Wieley-Interscience, N.Y.,1966
  12. Catrol Sean, University of Chicago, Astrophysical Journal, 01.09.00
  13. Close F.E., An Introduction to Quarks and Partons, Academic press, London, 1979
  14. Cook N., Exotic propulsion, Jane’s Defense Weekly, 24.07.02
  15. Cook N., Anti-gravity propulsion comes out of closet, Jane’s Defense Weekly, 31.07.02
  16. Dokshitzer Y.L., Dyakonov D.I., Trojan S.I., Yard Processes in Quantum Cyromodynamics, Phys. Rev., 58C, 269, (1980)
  17. Dolgov A.D., Zeldovich Y.B., Cosmology and Elementary Particles, Rev. Mod. Phys., 53, 1 (1981)
  18. Ellis J., Grand Unified Theories in Cosmology, Phys. Trans. R.S., London, A307, 21 (1982)
  19. Ellis J., Gaillard M.K., Girardi G., Sorba P., Physics of Intermediate Vector Bosons, Ann. Rev. Nucl. Particle Sci., 32, 443 (1982)
  20. Ellis J., Sachrajda C.T., Quarcs and Leptons, NATO Advanced Study Series, Series B, Physics, V.61, Plenum Press, N.Y., 1979
  21. Faddeev L.D., Popov V.N., Phys. Lett., 1967, V.25B, p.30
  22. Feynman R.P., The Theory of Fundamental Processes, Benjamin, N.Y., 1962
  23. Feynman R.P., Quantum Electrodynamics, Benjamin, N.Y., 1962
  24. Feynman R.P., The Feynman Lectures on Physics, Addison Wesley, Reading, Mass., 1963
  25. Feynman R.P., Photon-Hadron Interactions, Benjamin, N.Y., 1972
  26. Feynmann R.P., In: Weak and Electromagnetic Interactions at High Energies, Les Houches Sessions, 29, North-Holland, Amsterdam, 1977
  27. Field R.D., In: Quantum Flavordynamics, Quantum Chromodynamics and Unified Theories, NATO Advanced Study Series, Series B, Physics, V.54, Plenum Press, N.Y., 1979
  28. Fradkin E.S., Tyutin I.V., Renormalizible theory of massive vector particles, Riv. Nuovo Cimento, 1974, V.4, 1
  29. Fritzch H., Minkowski P., Flavordynamics of Quarks and Leptons, Phys. Rep., 73C, 67 (1981)
  30. Georgi H., Glashow S.L., Unity of all elementary-particle forces, Phy. Rev. Lett., 1974, V.32, 8
  31. Georgi H., Lie Algebras in Particle Physics, Benjamin-Cummings, Reading, Mass., 1982
  32. Gilman F.J., Photoproduction and Electropeoduction, Phys. Rep., 4C, 95 (1972)
  33. Glashow S.L., Partial symmttries of weak interactions, Nucl/ Phys., 1961, V.22, 3
  34. Glashow S.L., Illiopous I., Maiani L., Weak interactions with lepton-hadron symmetry, Phys. Rev., Series D, 1970, V.2, 7
  35. Goldstein H., Classical Mechanics, Addison Wesley, Reading, Mass., 1977
  36. Goldstone I., Field theories with “superconductor” solutions, Nuovo Cimento, 1961, V.19, 1
  37. Green M.B., Surv. High Energy Physics, 3, 127, (1983)
  38. Green M.B., Gross D., eds., Unified String Theories, Word Scientific, Singapore, 1986
  39. Green M.B., Schwarz J.H., Witten E., Superstring Theory, V.1,2, Cambridge University Press, Cambridge, 1986
  40. Greene B., The Elegant Universe. Superstrings, Hidden Dimensions, and the Quest for Ultimate Theory, Vintage Books, A Division of Random House, Inc., N.Y., 1999
  41. Halsen Francis, Martin Alan D., Quarks and Leptons. An Introductory Course in Modern Particle Physics, 1983
  42. Higgs P.W., Broken symmetries, massless particles and gauge fields, Phys. Lett., Series B, 1964, V.12, 2
  43. Kac V., Infinite Dimensional Lie Algebras, Bierkhauser, Boston, 1983
  44. Kaku M., Introduction to Superstrings, Springer-Verlag, N.Y., 1988
  45. Kim J.E., Langacker P., Levine M., Williams H.H., A Theoretical and Experimental Review of Neutral Currents, Rev. Mod. Phys., 53, 211 (1981)
  46. Kobayashi M., Maskawa T., CP-violation in the renormalizible theory of weak interactions, Progr. Theor. Phys., 1973, V.49, 2
  47. Langacker P., Grand Unified Theories and Proton Decay, Phys. Rep., 72c, 185 (1981)
  48. Lautrup B., In: Weak and Electromagnetic Interactions at High Energies, NATO Advanced Study Series, Series B, Physics, V.13a, Plenum Press, N.Y., 1975
  49. Leader E., Predazzi E., Gauge Theories and the New Physics, Cambridge University Press, Cambridge, 1982
  50. Llewellyn Smith C.H., In; Phenjmenology of Particles at High Energy, Academic Press, N.Y., 1974
  51. Moody R.V.J., Algebra, 10, 211 (1968)
  52. Mulvey J.H., The Nature of Matter, Clarendon, Oxford, 1981
  53. Nambu Y., Lectures at the Copenhagen Summer Symposium, 1970
  54. Okubo S., Tosa Y., Duffin-Kemmer formulation of gauge theories, Phys. Rev., 1979, V.D20, 2
  55. Peccei R.D., Status of the standard model, Hamburg, DESY, 1985
  56. Politzer H.D., Quantum Chromodynamics, Phys. Rep., 14C, 129, (1974)
  57. Polyakov A.M., Phys. Lett., 103B, 207, 211 (1981)
  58. Popov V.N., Quantum vortices in the relativistic Goldstone model, Proc. of XII Winter school of theoretical physics in Karpacz, p.397-403
  59. Review of particle properties, Particle data group, Geneva, CERN, 1984, Phys. Lett., 1986, V.170B, p.1-350
  60. Reya E., Perturbative Quantum Chromodynamics, Phys. Rep., 69C, 195 (1981)
  61. Rose M.E., Elementary Theory of Angular Momentum, Wiley, N.Y., 1957
  62. Salam A., Elementary particles theory, Stockholm, W.Swartholm Almquist and Weascell, 1968
  63. Schwarz J.H., ed., Superstrings, V.1,2, World Scientific, Singapore, 1985
  64. Söding P., Wolf G., Experimental Evidence of QCD, Ann. Rev. Nucl. Particle Sci., 31, 231 (1981)
  65. Steigman G., Cosmology Confronts Particle Physics, Ann. Rev. Nucl. Particle Sci., 29, 313 (1979)
  66. Steinberg J., Neutrino Interactions, Proc. Of the 1976 School of Physics, CERN Rep. 76-20, CERN, Geneva, 1976
  67. T’Hooft G., Renormalization Lagrangians for massive Yang-Mills fields, Nucl. Phys. Series B, 1971, V. 35, 1
  68. Vilenkin A., Cosmic strings and domain walls, Phys. Rep., 121, 1985
  69. Weinberg S., Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, Mass., 1971
  70. Weinberg S., Recent Progress in the Gauge Theories of the Weak, Electromagnetic and Strong Interactions, Rev. Mod. Phys., 46, 255 (1974)
  71. Weinberg S., The First Three Minutes, A. Deutsch and Fontana, London, 1977
  72. Wiik B.H., Wolf G., Electron-Positron Interactions, Springer Tracts in Mod. Phys., 86, Springer-Verlag, Berlin, 1979
  73. Wilczek F., Quantum Chromodynamics, The Modern Theory of the Strong Interaction, Ann. Rev. Nucl. Particle Sci., 32, 177 (1982)
  74. Wu T.T., Jang C.N., Phys. Rev., D12, 3845 (1975)
  75. Wybourne B.G., Classical Groups for Physicists, Wiley, N.Y., 1974
  76. А.И.Ахиезер, Ю.Л.Докшицер, В.А.Хозе, Глюоны, УФН, 1980, т.132
  77. В.А.Ацюковский, Критический анализ основ теории относительности, 1996
  78. Дж.Бернстейн, Спонтанное нарушение симметрии, сб. Квантовая теория калибровочных полей, 1977
  79. Н.Н.Боголюбов, Д.В.Ширков, Квантованные поля, 1980
  80. Ф.Ф.Богуш, Введение в калибровочную полевую теорию электрослабых взаимодействий, 2003
  81. С.Вейнберг, Гравитация и космология, 2000
  82. Дж.Вебер, Дж.Уиллер, Реальность цилиндрических волн Эйнштейна-Лоренца, сб. Новейшие проблемы гравитации, 1961
  83. ВюГюВеретенников, В.А.Синицын, Теоретическая механика и дополнения к общим разделам, 1996
  84. Е.Вигнер, Теория групп и ее приложения к квантовомеханической теории атомных спектров, 2000
  85. В.И.Денисов, А.А.Логунов, Существует ли в общей теории относительности гравитационное излучение?, 1980
  86. А.А.Детлаф, М.Б.Яворский, Курс физики, 2000
  87. А.Д.Долгов, Я.Б.Зельдович, Космология и элементарные частицы, УФН, 1980, т.130
  88. В.И.Елисеев, Введение в методы теории функций пространственного комплексного переменного, 1990
  89. В.А.Ильин, В.А.Садовничий, Бл.Х.Сендов, Математический анализ, Учебник в 2 частях, 2004
  90. Э.Картан, Геометрия групп Ли и симметричные пространства, 1949
  91. Ф.Клоуз, Кварки и партоны: введение в теорию, 1982
  92. Н.П.Коноплева, В.Н.Попов. Калибровочные поля, 2000
  93. А.Лихнерович, Теория связностей в целом и группы голономии, 1960
  94. В.И.Моренко, Общая теория относительности и корпускулярно-волновой дуализм материи, 2004
  95. А.З.Петров, Новые методы в общей теории относительности, 1966
  96. А.М.Поляков, Калибровочные поля и струны, 1994
  97. Ю.Б.Румер, Исследование по 5-оптике, 1956
  98. В.А.Рубаков, Классические калибровочные поля, 1999
  99. В.А.Садовничий, Теория операторов, 2001
  100. Г.М.Страховский, А.В.Успенский, Экспериментальная проверка теории относительности, УФН, т.86, вып.3, 1965, июль
  101. А.Д.Суханов, Фундаментальный курс физики. Квантовая физика, 1999
  102. Дж.Уиллер, Гравитация, нейтрино и Вселенная, 1962
  103. Л.Д.Фаддеев, Гамильтонова форма теории тяготения, Тезисы 5-й Международной конференции по гравитации и теории относительности, 1968
  104. Р.Фейнман, Теория фундаментальных процессов, 1978
  105. В.А.Фок, Применение идей Лобачевского в физике, 1950
  106. Ф.Хелзен, А.Мартин, Кварки и лептоны, 2000
  107. А.К.Шевелев, Структура ядер, элементарных частиц, вакуума, 2003
  108. Э.Шредингер, Пространственно-временная структура Вселенной, 2000
  109. И.М.Яглом, Комплексные числа и их применение в геометрии, 2004
Количество просмотров публикации: -

Господа,эта начальная работа по ТО "устарела".Читайте первые три работы на авторской странице из основного списка.Там вы поймёте физическую природу теории относительности и поймёте механизмы "парадоксов" и найдёте даже опровержение СТО.21 февраля 2019 год.
нажимаете мышкой на строчку "Генрих Арутюнов Гс Диссидент" вверху,и выходите на Авторскую страницу.(14.07.2019)

В этой статье будет элементарно показанно,что одно из двух главных следствий «Теории относительности» Эйнштейн доказать не смог.
Из этого естественно следует,что никакой «теории относительности» не существует,а существует только неверная концепция Пуанкре-Лоренца.

Эта статья задумывалась мной,что бы показать ситуацию с главным следствием
и главной нерешённой задачкой «теории относительности»- «парадоксом расстояния».
При написание в неё была включена ситуация со второй главной задачкой –«парадоксом времени», которую Эйнштейн был вынужден решать, но решить не смог.В связи с тем,что ситуация с «парадоксом времени» была более запутанная и несла доплнительные интересные следствия, из конечного содержания этой статьи она изъята и будет описана в дополнительной статье.

Как известно,Гипотеза относительности состояла из двух главных частей.Одна часть это гипотеза сокращения расстояния,и вторая часть это гипотеза замедления времени.
Из второй части гипотезы «замедления времени» сразу прямо следует второй главный парадокс-«парадокс времени» или, как его принято называть,всем известный «парадокс близнецов».
Из первой части гипотезы «сокращения расстояний», естественно равносильно следует мало известный «парадокс расстояний».
Если принять,что гипотеза относительности –это теория, Оба главных следствия, обязаны быть доказаны.

Парадокс расстояний –первое главное следствие СТО(Специальной Теории Относительности)- не так широко известен.Его даже как буд-то не называют прямо «парадоксом расстояния» и вместо этого предоставляют нам аналогичные по смыслу,но более хитро закрученные «сараи» и другую утварь.,которые тоже не котируются.
888-Парадокс расстояния представлен в Русской и английской википедии,как парадокс "шеста и сарая(гаража)",и в немецкой википедии к этой версии добавлена версия "стержня и отверстия" рассмотренная в этой статье.(добавлено после11.07.17)-888

Итак, приняв в виде гипотезы сокращение длины движущихся предметов,мы сразу попадаем в рамки парадокса расстояния.
Если у нас есть стержень и есть равное ему по длине отверстие.Когда стержень летит, то он, очевидно, сокращается и может пройти через неподвижное отверстие("приземляется" на отверстие параллельно,как самолёт на полосу).
Если ситуацию перевернуть, как того требует главная философияи теории относительности, то окажется, что относительно стержня летит отверстие, оно соответственно оказывается короче стержня и поэтому стержень в него не входит.
Так как в рамках теории относительности дело к счатью(а может и к сожалению) до относительности «события» не дошло,то во втором случае мы обязанны иметь тот же результат,когда стержень обязан пройти через отверстие.
Как эту задачку доказывает Эйнштейн.Никак не доказывает.Эйнштейн всю жизнь делает вид, что этого главного парадокса не существует.
Этот парадокс существует среди устного творчества у физиков младших курсов.Физики из поколения в поколение передают новеньким,методологию,как в рамках СТО решать возникающие парадоксы.И основным примером этой методологии служит самый главный и конструктивно простой «парадокс расстояния».
Согласно выдуманному методу, отверстие, в конечном счёте, летя поворачивается и поэтому способно под углом пропустить через себя стержень.
Итак вернёмтесь опять в начало.
Отверстие неподвижно,стержень сокращается и (параллельно)входит в него.В этот момент часы на концах отверстия показывают одно и то же время.А часы на концах стержня показывают различное время.Это происходит потому,что согласно СТО в движущемся поезде часы впереди показывают время раньше,чем часы сзади.Придуманно это исходя из простых соображений.Если поезд стоит и одновременно посветить из начала и конца фонариком,то лучи встретятся в середине поезда.Если в это время мимо проезжал другой поезд,то пока идут лучи он успевает отъехать дальше,и поэтому лучи в движущемся поезде встретятся в той же точке,но она будет ближе к концу,а не посередине движущегося поезда.Из этого в СТО делается вывод,что этот непорядок надо убрать.Лучи в движущемся поезде должны идти с той же скоростью, и обязанны встретиться в середине,если они встретились ближе к концу значит передний луч реньше вошёл в поезд,значит часы на носу показывают меньшее время,чем в хвосте.
Итак возвращаясь к стержню,оказывается,что с точки зрения стержня моменты совпадения его концов с концами отверстия имеют разное время,то есть сначала стержень одним концом соприкоснулся с отверстием потом другим.
В принципе на этом моменте устное творчество обрывается,в виду предположения,что
показав основной принцип метода доказательства, и подведя ситуацию к осязаемому решению, можно дальше не продолжать.,из чего заключается, что стержень входящий концами в разное время повёрнут, естественно, под углом и проблем поэтому не испытывает.
Подобное не доконченное доказательство можно ещё и в большем объёме продолжить,показав,в конечном итоге,что всё это туфта.
Можно так же не тратя время на подробный общий анализ,показать,что в конкретном применённом доказательстве присутстсвует логическая ошибка.Для этого достаточно всего одного предложения(этот анализ даётся ниже).
Но мы к счастью имеем более простой способ доказательства,чем сложные попытки манипулирования, выдуманные «знатоками» СТО.
Дело в том,что формулировалась задачка изначально на основе полной «симметрии»
Или чистой «относительности». Но в процессе доказательства закон относительности был ими отброшен,как мешающий,и вышло,что начали мы «во здравие»,а кончали «за упокой».начинали в рамках СТО,а приехали за границу.
Начиналась задачка с того,что стержень по факту сократится и войдёт в отверстие, и что если системы равноправны,то с точки зрения стержня отверстие сократится и ничего не выйдет.Согласно логике «релятивистов» летящая система знает,кто у неё на борту стержень или отверстие и в нужный момент по ситуации подстраивается под результат. Когда надо она просто сокращается, а когда «очень надо» ещё и поворачивается.
Как мы видим из простой, школьного уровня логики, задачки физики сплели головоломку,которую сами нигде до конца не доказали,которая у них обрывается не дойдя даже до середины доказательства.
Любой человек разумный спокойно способен понять,что физики потеряли во время доказательства сам принцип относительности.Но зашёренное с первого курса мышление физиков при передаче друг дружке основ методологии «теории относительности» не способно в дальнейшем самостоятельно отличить элементарную логику от бреда.
Что же в самом деле Эйнштейн в этой ситуации.
Эйнштейн в отличие от своих «защитников», прекрасно знал,что эта задачка в рамках СТО не решается, а потому он и не показал нам её решение.Эйнштейн знал,что эта задачка способна обрушить СТО.Эта задачка была не такая броская на вид,как «парадокс близнецов» и от неё можно было поэтому временами успешно отмахиваться,пока СТО не превратилась в догму,а сам Эйнштей ни обрёл непрекосновенный статус,где можно было вместо ответа просто показать всем язык.
Эйнштейн всю жизнь знал об этом парадоксе и знал как глупо его доказали его сторонники.И здесь мы можем его понять,ведь он уже не виноват,что физики сами придумали это доказательство и сами в эту чушь всю жизнь верят.
Итак,ни первое ни второе главные следствия СТО Эйнштейном не доказанны.
Более того,оба парадокса в рамках СТО не доказуемы,хотя они в рамках СТО и возникли.
Это показывает, что СТО не работает и не является теорией.
Более того, зная о неразрешимости подобных следствий и будучи поэтому уверенным
в ошибочности концепции относительности Пуанкаре и не объявил о новой физике.
Но Эйнштейн посчитав,что лёгкая и красивая концепция способно жить отдельно от тяжёлых её следствий, решил нам представить новую физику.
Сама эта физика,как я показал в статье про электрон,не была каким-то общим законом природы, а явилась следствием расчётов Лоренца, какой концепции удовлетворяет поведение электрона.Из условно говоря трёх вариантов, согласно расчётам Лоренца подошла концепция названная позже СТО.

Под понятием парадокс в науке принято считать кажущееся противоречие,разрешаемое при верной постановке задачи и верно применённом методе решения.
В обыденной жизни парадоксом принято часто считать обычное не решаемое противоречие,в связи с тем что оба представления имеют противоположный смысл - поэтому кавычки мною ставились произвольно.

Ещё раз необходимо иметь в виду,что физики не просто так придумали "доказательство" парадокса расстояния,они обязанны были это сделать,так как в противном случае естественно следует,что СТО не ВЫПОЛНЯЕТСЯ.
Так как по-настоящему,теории относительности вообще не существует,как учебной дисциплины (что за пределами физики естественно не афишируют),то половинчатые и противоречивые доказательства,каждый в силу своих способностей и желания обязан додумывать самостоятельно,а не в учебных аудиториях в дискуссиях и разборах существа дела,как это происходит с другими дисциплинами в физике и математике,имеющими учебный(а значит и теоретический) статус.Подобная двойственность,когда теория с одной стороны объявленна,как основа физики,а с другой стороны не входит даже в обязательный курс обучения и носит характер ознакомительный.Всё это и приводит к возможности произвольных манипуляций.Так,что то,что начинающие физики довольствуются всякими половинчатыми неоконченными присказками удивлять никого не должно,а потом всю жизнь в это верят,как в лучшие студенческие годы.
В этой связи можно упомянуть изложение терии относительности Тейлором в так называемом им учебнике для студентов и школьников.Этому "учебнику" больше подходит,название научно популярной книги,показывающей,что автор не разобрался сам в Эйнштейновском изложении и предоставил нам,как и все другие авторы, свою версию,которая при детальном анализе противоречит теории Эйнштейна.
Тейлор,в частности понимая важность главного парадокса,делает вид,что он доказуем.У Тейлора этот парадокс,называется-"шеста и сарая".Сам Тейлор естественно радовать нас доказательством не спешит,и предлагает это самостоятельно сделать читателю,давая только намёки как к этой задачке подойти.Решать это Тейлор нам советует,почему-то не обычным традиционным способом,а с привлечением сомнительного способа,с использованием пространственно-временных диаграмм.
Ещё раз кратко к истории теории относительности.
История теории относительности развивалась следующим образом.
Сначала Альберт Майкельсон поставил знаменитый опыт.В последствии Эйнштейн всю жизнь пробовал вычеркнуть и выбросить Майкельсона из «истории теории относительности» рассказывая всем очередную хохму,что придумывая «это» он единственный из физиков всего мира не был в курсе опыта Майкельсона.
Далее Лорентц, придумал,как объяснить результаты опыта Майкельсона. Лоренц предложил что движущиеся тела сокращаются и тем самым совершил революцию в Физике,а главное в сознание.
Далее революция в сознание всем так понравилась,что Пуанкаре Лоренц и другие придумали ещё и замедлить время и зафиксировать скорость света,после чего получилась концепция относительности.
Потом Лоренц доказал,что эту концепцию можно применить ко всей физике.А Пуанкаре это окончательно математически оформил.
Далее Пуанкаре и Лоренц,решили,что всё это туфта,т.к. в частности у них получился «парадокс» расстояния» и другие противоречия и поэтому поняли,что эта концепция противоречит физике.(потом всю оставшуюся жизнь Пуанкаре хотел сам себя опровергнуть,но прыгнуть выше головы не смог).
Далее пришёл Эйнштейн –который опять оказался единственный среди всех физиков не слышавший о «концепции относительности» Лоренца-Пуанкаре (как и в случае с Майкельсоном) и предоставил нам Хохму,которая называлась «к электродинамике движущихся тел» или говоря по другому СТО,которую все физики и математики до сих пор толком не прочли потому,что в настоящем юморе они не разбираются.

Главный парадокс теории относительности - продолжение:
К «доказательсту» парадокса расстояния(стержня и отверстия),(«шеста и сарая»).
Как я писал выше,предоставленное физиками доказательство главного парадокса,содержит логическую ошибку, которую можно описать «всего в одном предложении».Ошибка в следующем.
Расставив часы в системе связанной с отверстием,как это было показано выше, физики сложили эти результаты(показания) в портфель,пересели с ним в систему связанную со стержнем,открыли портфель и расставили старые известные показания на те же места,для новой системы отсчёта.Естественно,что после этого у них получилось то же самое.То есть произошёл логический самообман,так как никакого взгляда из новой системы не было,а в обоих случаях рассуждения опираются на взгляд из одной системы.В связи с симметричностью систем в чём-то такой подход имеет оправдание,но это "оправдание" кажущееся.
В этом и заключена некоторая хитрость подобной головоломки.Далее я не буду опять-таки разбирать эту ситуацию до конца.Пока я всего лишь показал,что никакого доказательства парадокса не было,а был один и тот же взгляд,с одной и той же стороны,приведший,естественно, к одному и тому же результату,и ошибочно объявленного,что это два разных результата приведших к одному и тому же событию.
Хитрость,ещё раз,в том,что часы расставляются на прежние места,так, как буд-то никакой пересадки в другую систему не было,а при новом взгляде, места расстановки часов должны быть другие,поэтому у физиков и произошло желанное совпадение результата.В СТО время на часах зависит от места расположения часов,как это было показанно выше,на примере с поездом,и этот "закон" полагается соблюдать всегда,а не только тогда,когда это подходит под желаемый результат.
Если рассуждать,без портфеля,то физики просто оставили все показания на месте пересели в другую систему и снова на неё посмотрели.Подобная тактика имеющая цель подтвердить СТО привела в конечном счёте к опровержению теории относительности, так как "старые" показания дают результат,что движущееся отверстие не сократилось,а напротив расширилось.Таким образом "защитники" СТО,придымавшие этот оригинальный способ-манипуляцию сами и опровергли СТО,которую они защищали.
Как упоминалось выше,при аналогичном взгляде в системе отсчёта стержня,стержень не пройдёт в отверстие,и это понятно любому школьнику.
Конечно если конкретное,представленное физиками доказательство не верно,то это ещё не говорит,что доказательство этого парадокса вообще не возможно.Но,с другой стороны это в любом случае уже говорит,что теории относительноси не существует,как теории,так как в рамках настоящей «теории» должны были быть представленны решения парадоксов,тем более –главного парадокса.
Ещё раз необходимо отметить,что речь с одной стороны идёт о очень важной задачке,а с другой стороны о том, что предоставленное физиками решение не входит в учебники,так как носит статус народного творчества.То есть вписывать подобные доказательства в учебники считается,вроде как лженаукой,но если кто усомнился в правильности теории относительности,то, на тебе пожалуйста, жуй.
Если вернуться опять к упомянутому выше Тейлору,то придуманный им или кем-то другим "парадокс сарая" выглядит более предпочтительнеё с той стороны,что в нем отсутствует процесс "приземления" стержня,а есть только чистый процесс сравнения,поместится он в сарай или нет.В нашем изложении процесс "приземления" в конечном счёте тоже не учитывался и оставался,только главный принцип "продольного размера" стержня.Очевидно,что "физик" Тейлор не просто так небрежно отослал нас решать диаграммы,а не смог решить эту задачку обычным физическим способом,и не взял на себя ответственность даже сам расписать нам доказательство и в диаграммах,потому,что понимал,что всё это туфта.В своём "учебнике" Тейлор расписывает "свою" теорию относительности СТО - доступным простым и наглядным способом с картинками,но на "парадоксе сарая" у него весь этот метод спотыкается и ломается. Очевидно,что при попытке хитрого доказательства,через диаграммы возникнет,точнее возникает,та же проблема "относительного взгляда" ,которая была описанна выше,и желанный ответ получается только в случае неверного взгляда,то есть по факту у "физика" Тейлора,получится две картинки, В одной стержень укоротится и будет лежать на полу сарая,а в другой что бы поместиться-он будет повернут в сарае под углом.Естественно,что доводить дело до конечных картинок Тейлор,в этом случае, не посмел,так как от туда прямая дорога в известный "жёлтый дом".Сам "учебник" Тейлора написан естественно не для студентов в прямом смысле,а для всех желающих познакомиться с СТО,потому,что как я отмечал выше -"Главная теория физики" в обязательных планах обучения физиков отсутствует во всех ВУЗах мира,по той причине,что как таковой,как строгой и понятной теории её вообще не существует.
Как известно,Эйнштейн "вырос" на работах физика и философа Маха.Ценральная мысль Маха в частности описанна в его "Механике".Согласно Маху земля по бокам распухшая не обязательно в следствие её вращения,а в равной мере это может быть следствием не вращения самой земли,а вращением вокруг земли звёздного неба.Подобная позиция Маха большинством физиков естественно воспринималась иронически.
Но, в своё время,даже Мах,которого Эйнштейн считал "физическим" духовным отцом своих "изысканий" ,после появления "теории относительности" поспешил отречься от нерадивого ученика,так как,очевидно, понял,что дело когда-нибудь кончится дурдомом.

Главный советский диссидент,физик и математик - создатель первой всесоюзной неформальной оппозиционной партии (ВСПК) благодаря которой родились,"Мемориал" ,"ДС" и все остальные недоразумения. А так же после публикации в самой популярной тогда газете "КП" возможно и массовое неформальное движение 87-88 годов. Арутюнов.

Http://kgb.schizophrenia.dissident-gs.org/ КГБшный диагноз вялотекущая шизофрения впервые в открытом доступе.
(Выделяете аккуратно адрес(без комментария)нажимаете на нём правой кнопкой,
в появившемся контекстном меню выбираете-"открыть в новом окне"

Http://pervaya-opposition-partiya-v-ss
sr.relativitaetstheorie-online.de/
Первая всесоюзная неформальная политическая партия в СССР

Основное «назначение» множества парадоксов СТО – это показать внутренние противоречия теории. Если теория делает предсказания о каком-либо явлении, которые противоречат друг другу, то это свидетельствует об ошибочности теории, что требует её пересмотра. Парадоксы СТО выводятся из мысленных экспериментов, то есть, воображаемого эксперимента на основе положений теории. Одним из таких парадоксов по праву считается один из старейших парадоксов – парадокс Эренфеста от 1909 года, в настоящее время часто формулирующийся как «парадокс колеса» и который по утверждениям многих авторов до настоящего времени не имеет удовлетворительного объяснения, решения.

В литературе приводятся несколько различающихся формулировок «парадокса» Эренфеста. Здесь в кавычки слово парадокс поставлено умышленно, поскольку в данной заметке будет показано, что парадокс сформулирован с ошибками, на основе утверждений, приписываемых специальной теории относительности, но которых она не делает. Обобщённо эти различные формулировки парадокса можно свести к трём группам:

  • при вращении колеса спицы деформируются;
  • невозможно вообще раскрутить колесо из абсолютно твёрдого материала;
  • при раскрутке со световой скоростью (обода) колесо стягивается в точку, исчезает.

Все эти формулировки в своей сути достаточно близки друг к другу и при некоторых условиях объединяются. Например, в работе «Теория относительности в элементарном изложении» приводится такая формулировка:

Вначале колесо неподвижно, а затем приводится в столь быстрое вращение, что линейная скорость его краёв приближается к световой. При этом участки обода... сокращаются.., тогда как радиальные «спицы»... сохраняют свою длину (ведь релятивистское укорочение испытывают только продольные размеры, т.е. размеры в направлении движения) .

Рис. 1. Иллюстрация к парадоксу колеса в работе

И затем приводится решение сформулированного парадокса:

Когда неподвижное вначале колесо приводится в быстрое вращение: его обод стремится сократиться, а спицы – сохранить неизменную длину. Какая из этих тенденций возьмёт верх – всецело зависит от механических свойств обода и спиц; но никакого укорочения обода без пропорционального ему укорочения спиц не будет (разве что колесо примет форму сферического сегмента). Очевидно, что с принципиальной точки зрения ничто не изменится также и в том случае, если колесо со спицами будет заменено сплошным диском» .

Суть решения, как видим, состоит в том, что либо спицы обязательно сократятся, либо обод вытянется, в зависимости, от жёсткости материала. Видимо, при однородности материала сокращение будет взаимным: сократятся и спицы и обод, но в меньшей мере.

Парадокс колеса в версии Эренфеста приводится в работе «Неисправленная ошибка Пуанкаре и анализ СТО» :

Рассмотрим плоский, твёрдый диск, вращающийся вокруг своей оси. Пусть линейная скорость его края по порядку величины сравнима со скоростью света. Согласно специальной теории относительности, длина края этого диска должна испытывать лоренцево сокращение...

В радиальном направлении лоренцева сокращения нет, поэтому радиус диска должен сохранять свою длину. При такой деформации диск технически уже не может быть плоским.

Угловая скорость вращения уменьшается с увеличением расстояния от оси вращения. Поэтому соседние слои диска должны скользить друг относительно друга, а сам диск будет испытывать деформации кручения. Диск с течением времени должен разрушиться .

Трактовка, следует заметить, весьма специфическая: разрушение связывается не со сжатием внутренних слоёв или спиц, а с их изгибом, закручиванием. Причину возникновения разности угловых скоростей автор не объясняет, ссылаясь на Эренфеста, и лишь добавляя:

Сами релятивисты не смогли привести никаких объяснений физических причин ни для объяснения гипотезы, ни для объяснения парадокса .

Однако, это единственное описание эффекта скручивания диска, которое мне встретилось в интернете при беглом просмотре.

Википедия описывает парадокс следующим образом, приводя в тексте ссылку на детскую энциклопедию:

Рассмотрим окружность (или полый цилиндр), вращающуюся вокруг своей оси. Так как скорость каждого элемента окружности направлена по касательной, то она (окружность) должна испытывать лоренцево сокращение, то есть её размер для внешнего наблюдателя должен казаться меньше, чем её собственная длина.

Изначально неподвижная жёсткая окружность после её раскручивания должна парадоксальным образом уменьшать свой радиус, чтобы сохранить длину.

По рассуждениям Эренфеста абсолютно твёрдое тело невозможно привести во вращательное движение, поскольку в радиальном направлении лоренцева сжатия быть не должно. Следовательно, диск, бывший в покоящемся состоянии плоским, при раскручивании должен как-то изменить свою форму .

Здесь указывается ещё одно проявление парадокса со ссылкой на Эренфеста: абсолютно твёрдый диск вообще невозможно привести во вращение. Подобная же трактовка приведена и в «Энциклопедии для детей», которая, в свою очередь, ссылается на авторскую работу Эренфеста – короткую заметку «Равномерное вращательное движение тел и теория относительности» от 1909 года:

Заметка содержала парадоксальное утверждение: абсолютно твёрдый цилиндр (или диск) невозможно привести в быстрое вращательное движение вокруг центральной оси, в противном случае возникает противоречие частной теории относительности. В самом деле, пусть такой диск вращается, тогда длина его окружности вследствие лоренцева сокращения уменьшится, а радиус диска останется постоянным... При этом отношение длины окружности диска к диаметру уже не равняется числу n. Этот мысленный эксперимент и составляет содержание парадокса Эренфеста .

Здесь, можно сказать, приводится основная, общепринятая формулировка парадокса Эренфеста, отличающаяся от распространённой формулировки парадокса колеса. В ней уже не говорится о деформации диска или спиц колеса. Просто диск будет оставаться неподвижным.

Проведём опыт с диском. Будем вращать его, постепенно увеличивая скорость. Размеры диска... будут уменьшаться; кроме того, диск искривится. Когда же скорость вращения достигнет скорости света, он попросту исчезнет. И куда только денется?.. .

Диск при вращении должен был деформироваться, как показано на рисунке.

То есть, как и выше делается вывод о деформации спиц, при этом, очевидно, вполне обоснованно предполагается, что твёрдость обода превышает гибкость спиц.

Наконец, чтобы выяснить, какая из формулировок парадокса соответствует авторской, приведём описание парадокса, как он сформулирован в упомянутой работе Эренфеста. Приводимая ниже цитата практически составляет всё содержание той краткой заметки:

Оба определения не абсолютной твёрдости являются – если я правильно понял – эквивалентными. Поэтому достаточно указать на простейший вид движения, для которого данное первоначальное определение уже приводит к противоречию, а именно на равномерное вращение вокруг неподвижной оси.

В самом деле, пусть имеется не абсолютно твёрдый цилиндр C с радиусом R и высотой H. Пусть он постепенно приводится во вращение вокруг своей оси, происходящее затем с постоянной скоростью. Назовём R" радиус, который характеризует этот цилиндр с точки зрения неподвижного наблюдателя. Тогда величина R" должна удовлетворять двум противоречащим друг другу требованиям:

а) длина окружности вращающегося цилиндра по сравнению с состоянием покоя должна сократиться:

2πR′ < 2πR,

поскольку каждый элемент такой окружности движется в направлении касательной с мгновенной скоростью R"ω;

б) мгновенная скорость какого-либо элемента радиуса перпендикулярна его направлению; это значит, что элементы радиуса не подвергаются никакому сокращению по сравнению с состоянием покоя.

Отсюда следует, что

Замечание. Если считать, что деформация каждого элемента радиуса определяется не только мгновенной скоростью центра тяжести, но также и мгновенной угловой скоростью этого элемента, то необходимо, чтобы функция, описывающая деформацию, содержала кроме скорости света с ещё одну универсальную размерную константу, или же в неё должно входить ускорение центра тяжести элемента .

Как видим, по крайней мере, в первоначальной авторской версии парадокс прямо касается не абсолютно твёрдых тел. Ничего не говорится о скручивании слоёв. Ничего об «исчезновении» диска. Возможно, все эти расширения первоначальной идеи сформулированы где-то в последующих работах Эренфеста, но оставим это всё на совести цитированных авторов: проверяемых ссылок на свои утверждения они не привели. Таким образом, мы вполне обоснованно можем рассмотреть:

Миф о парадоксе Эренфеста

Рассмотрим по возможности современные версии парадокса, указанные в начале статьи. Простейшей и, видимо, самой распространённой, является версия «парадокс колеса», с которой, как можно заметить, в наибольшей степени совпадает и противоречие, сформулированное в 1909 году Эренфестом. По сути, парадокс Эренфеста и является тождественно парадоксом колеса.

Однако, сначала мы рассмотрим его предельную версию. Это версия, в которой спицы или внутренняя часть колеса не вращаются вообще. В этом случае мы избавляемся от всяких сомнений о том, сокращаются спицы или не сокращаются. Такое «колесо», как можно догадаться, имеет вид полого тонкостенного цилиндра или тонкого кольца, насаженного на толстую ось. Решение такого «парадокса» очевидно. И вновь, как выше, слово «парадокс» здесь взято в кавычки исключительно по причине того, что это, собственно, и не парадокс, а псевдо-, мнимый парадокс. Специальная теория относительности описывает поведение такого колеса без каких-либо противоречий. Действительно, с точки зрения неподвижной оси «обод» колеса при вращении испытывает лоренцево сокращение, что приводит к уменьшению его диаметра. С этой точки зрения либо колесо лопнет, либо оно сожмёт ось, выдавив на ней выемку, либо при достаточной упругости кольцо растянется. В этом случае внешний наблюдатель не заметит никаких изменений, даже если колесо-кольцо будет раскручено до световой скорости: лишь бы материалу колеса хватило запаса упругости.

Теперь перейдём в систему отсчёта колеса-обода. Очевидно, что невозможно привязать систему покоя ко всему колесу, поскольку векторы скоростей точек направлены в разные стороны. В покое может быть одновременно лишь одна точка, касающаяся неподвижной поверхности. Понятно, что такое «неподвижное» колесо – это просто колесо, катящееся по неподвижной поверхности. О нём мы только-то и можем сказать, что скорость его центра равна половине скорости элемента на верхней части. Но это замечание вдруг неожиданно напоминает нам уже рассмотренный парадокс – парадокс транспортёра . Действительно, в том парадоксе тоже есть три точки: неподвижная; верхняя, движущаяся с некоторой скоростью и средняя, движущаяся с половинной от верхней скоростью. Что может быть общего между колесом и транспортёром?

Однако, присмотримся повнимательнее. Посмотрим на колесо под углом к его оси. Чем этот угол больше, тем сильнее «сплющивается» колесо, принимая вид вытянутого эллипса, что довольно заметно напоминает транспортёр.

Рис. 2. Если смотреть на колесо под большим углом, оно выглядит как эллипс. Окружность из утолщённой линии – это внешняя поверхность оси колеса. Окружность из тонкой линии – вращающийся обод (колесо)

Хотя на получившемся транспортёре лента – обод колеса движется по эллиптической траектории, мы вполне можем рассматривать «проекцию» этого обода на горизонтальную ось. В этом случае мы получаем вполне допустимую аналогию задачи о транспортёрной ленте и её очевидное решение:

В обоих случаях, и с точки зрения балки (станины) и с точки зрения... ленты, результатом будет натяжение ленты, приводящее либо к деформации... станины, либо к деформации... ленты. В зависимости от начальных условий: что будет задано более прочным. Парадокс транспортёра оказался мнимым, кажущимся парадоксом .

Обод колеса, видимый как транспортёрная лента, как и в задаче о транспортёре будет сокращаться, что неизбежно приведёт либо к его разрыву, либо к деформации оси, которая под выбранным углом выглядит как станина транспортёра. Понятно, что ось может быть сегментированной, то есть состоять из спиц, которые, как и сплошная ось, будут деформированы, если обод окажется прочнее.

Таким образом, вариант «парадокса» колеса с тонким ободом и неподвижной осью парадоксом не является, поскольку теория относительности делает о нём непротиворечивые предсказания.

Теперь перейдём к сплошному диску. Более того, будем считать его абсолютно твёрдым, то есть, рассмотрим вариант парадокса Эренфеста о невозможности раскрутки такого диска.

Представим диск как насаженные друг на друга концентрические окружности – ободья достаточно малой толщины и жёстко скреплённые друг с другом. Обозначим радиус каждого такого обода Ri. Длина окружности каждого обода, соответственно, 2πRi. Допустим, нам удалось раскрутить диск. Угловая скорость диска ω едина для каждой точки диска и определяет линейную скорость каждого частного обода диска. Здесь мы решительно отвергаем идею о скручивании как ничем не обоснованную. Тангенциальная скорость каждой точки обода vi = ωRi. Сокращённую длину окружности каждого обода определяем по уравнениям Лоренца:

L i = 2 π R i 1 − ω 2 R 2 i −−−−−−−−√ Li=2πRi1−ω2Ri2

Здесь мы рассматриваем задачу в системе единиц, в которой скорость света с = 1. Рассмотрим два обода: внешний с R0 и один из внутренних – R1, пусть R1 = kR0, где k = 0...1. Из уравнения (1) получаем:

L 1 = 2 π k R 0 1 − ω 2 k 2 R 2 0 −−−−−−−−−√ L 0 = 2 π R 0 1 − ω 2 R 2 0 −−−−−−−−√ L1=2πkR01−ω2k2R02L0=2πR01−ω2R02

При «раскручивании» диска два эти обода уменьшили свою длину. Следовательно, радиусы их новых окружностей составят:

l R 1 ω = L 1 2 π = k R 0 1 − ω 2 k 2 R 2 0 −−−−−−−−−√ R 0 ω = L 0 2 π = R 0 1 − ω 2 R 2 0 −−−−−−−−√ lR1ω=L12π=kR01−ω2k2R02R0ω=L02π=R01−ω2R02

Отношение радиусов ободьев после раскрутки равно:

R 1 ω R 0 ω = k R 0 1 − ω 2 k 2 R 2 0 −−−−−−−−−√ R 0 1 − ω 2 R 2 0 −−−−−−−−√ = k 1 − ω 2 k 2 R 2 0 1 − ω 2 R 2 0 −−−−−−−−−−√ R1ωR0ω=kR01−ω2k2R02R01−ω2R02=k1−ω2k2R021−ω2R02

Это выражение показывает, что отношение радиусов смежных слоёв зависит от скорости вращения. Нас должно заинтересовать, какой может быть скорость вращения, чтобы радиусы, отличающиеся в k раз в неподвижном состоянии, после раскрутки сравнялись. Видимо, это будет предельная скорость, после которой слои будут «наползать» друг на друга. Вычислим это отношение для указанного условия:

R 1 ω R 0 ω = k 1 − ω 2 k 2 R 2 0 1 − ω 2 R 2 0 −−−−−−−−−−√ = 1 R1ωR0ω=k1−ω2k2R021−ω2R02=1

Для наглядности отбросим левое равенство:

k 1 − ω 2 k 2 R 2 0 1 − ω 2 R 2 0 −−−−−−−−−−√ = 1 k1−ω2k2R021−ω2R02=1

Делим всё на k

1 − ω 2 k 2 R 2 0 1 − ω 2 R 2 0 −−−−−−−−−−√ = 1 k 1−ω2k2R021−ω2R02=1k

Возводим в квадрат обе части равенства

1 − ω 2 k 2 R 2 0 1 − ω 2 R 2 0 = 1 k 2 1−ω2k2R021−ω2R02=1k2

Избавляемся от дробного вида

k 2 − ω 2 k 4 R 2 0 = 1 − ω 2 R 2 0 k2−ω2k4R02=1−ω2R02

Переносим влево члены с радиусами, а вправо члены без радиусов

ω 2 R 2 0 k 4 ω 2 R 2 0 = 1 − k 2 ω2R02−k4ω2R02=1−k2

Собираем подобные члены

ω 2 R 2 0 (1 − k 4 ) = 1 − k 2 ω2R02(1−k4)=1−k2

Переписываем уравнение как решение для члена с радиусом

ω 2 R 2 0 = 1 − k 2 1 − k 4 ω2R02=1−k21−k4

Видим, что справа в равенстве есть сократимые члены

ω 2 R 2 0 = 1 − k 2 (1 − k 2 ) (1 + k 2 ) ω2R02=1−k2(1−k2)(1+k2)

Сокращаем

ω 2 R 2 0 = 1 1 + k 2 ω2R02=11+k2

Заменяем угловую скорость на линейную

v 2 0 = 1 1 + k 2 v02=11+k2

Извлекаем корень и находим значение скорости

v 0 = 1 1 + k 2 −−−−−√ v0=11+k2

Пересечение может начаться между соседними слоями, для которых почти k = 1. Собственно пересечение возникает при скорости внешнего обода:

v 0 = 1 1 + 1 −−−−√ = 1 2 –√ = 2 –√ 2 ≈ 0 , 7 v0=11+1=12=22≈0,7

Во-первых, это означает, что наше допущение о возможности раскрутить диск оказалось правомерным. Во-вторых, мы обнаруживаем, что два соседних бесконечно тонких слоя-обода будут давить друг на друга только при их скорости, составляющей более 0,7 от скорости света. А это, в свою очередь, означает, что при раскручивании каждый обод уменьшает как длину своей окружности, так и соответствующий ей радиус. Тем самым здесь мы же обнаруживаем заблуждение в отношении сокращения спиц вращающегося колеса. Все авторы при формулировке парадокса явно заявляют, что обод сокращается, а спицы – нет. Мы же обнаружили, что, наоборот, каждый обод, каждый тонкий слой колеса сокращается и уменьшает свой собственный радиус. Следовательно, он не препятствует сокращению слоя, обода, который находится выше него. Точно так же, слой, обод, находящийся ниже него, не препятствует и его собственному сжатию. Поскольку рассмотренные ободья все вместе образуют сплошной диск колеса, то это колесо и в целом не испытывает никаких внутренних деформаций, препятствующих его сжатию. Утверждения всех авторов, включая и автора парадокса – Эренфеста – ошибочны: радиус колеса будет уменьшаться без каких-либо препятствий:

Элементы радиуса не подвергаются никакому сокращению по сравнению с состоянием покоя .

Но у обнаруженного сокращения, сжатия радиусов есть довольно странная особенность: это сокращение возможно только до тангенциальной скорости внешнего обода, не превышающей 0,7 скорости света. Почему именно 0,7? Откуда, из каких физических особенностей колеса возникает это число? И что будет, если колесо раскрутить ещё быстрее?

Впрочем, почему мы утверждаем, что спицы будут сокращаться, ведь в нашей модели спиц нет, колесо сплошное. А в колесе со спицами нет никаких «тонких ободьев», между соседними спицами пустое пространство.

Как верно указано в работе , нет никакой разницы между сплошным диском и диском со спицами. Лоренцеву сокращению подвержены все элементы, удалённые от центра на одинаковое расстояние. То есть, в этом случае «тонкий слой» представляет собой последовательность из «долек» спиц и пустого пространства между ними. Здесь может возникнуть недоумённое возражение: как же так, почему это каждая «долька» спицы сжимается вдоль окружности? Ведь у них рядом пустое пространство! Да, пустое. Но лоренцеву сокращению подвержены все без исключения элементы, это не реальное физическое сжатие, это сжатие, видимое внешнему наблюдателю. Как правило, при описании лоренцева сокращения всегда подчёркивается: объект с точки зрения внешнего наблюдателя уменьшил свои размеры, хотя с точки зрения самого объекта с ним ничего не произошло.

Для пояснения этого тангенциального сжатия, утончения спиц представим себе движущуюся платформу, на которой с интервалом уложены, например, кирпичи. Внешнему наблюдателю будет казаться, что платформа сократилась. А что будет с интервалами между кирпичами? Кирпичи, разумеется, сократятся, но в случае неизменности интервала между ними, они просто вытолкнут друг друга с платформы. Однако, на самом деле кирпичи и интервалы между ними сокращаются как один единый объект. Любой наблюдатель, движущийся мимо платформы, будет видеть её уменьшенную длину, в зависимости от относительной скорости, и уменьшенную длину объекта «кирпичи с интервалами». С самой же платформой, кирпичами и интервалами между ними, как известно, ничего не произойдёт.

Так и в случае с колесом со спицами. Каждый отдельный радиальный слой колеса – обод будет представлять собой «слоёный пирог», состоящий из последовательных кусочков спиц и пространства между ними. Сокращаясь по длине, такой «слоёный» обод будет одновременно уменьшать свой радиус кривизны. В этом смысле полезно представить себе, что колесо сначала раскручено, затем замедлено до остановки. Что с ним будет? Оно вернётся в исходное состояние. Уменьшение его размеров никак не связано с его физической деформацией, это размеры, видимые внешнему, неподвижному наблюдателю. С самим колесом при этом ничего не происходит.

Отсюда, кстати, непосредственно и следует, что колесо может быть абсолютно твёрдым. Никаких усилий деформации к нему не прикладывается, изменение его диаметра не требует непосредственного физического сжатия материала колеса. Можно колесо раскручивать, затем замедлять сколько угодно раз: для наблюдателя колесо будет уменьшать свои размеры и вновь их восстанавливать. Но при одном условии: тангенциальная скорость внешнего обода колеса не должна превышать таинственной величины – 0,7 скорости света.

Очевидно, что при достижении этой скорости внешним ободом колеса, скорости всех нижележащих будут заведомо меньше. Следовательно, «волна» перекрытия начнётся с внешней части и будет постепенно перемещаться внутрь колеса, к его оси. При этом если внешний обод будет раскручен до скорости света, перекрытие слоёв будет только до слоя, имеющего 0,7 исходного радиуса колеса. Все более близкие к оси слои перекрывать друг друга не будут. Понятно, что это гипотетическая модель, поскольку пока неясно, что будет происходить со слоями, находящимися от оси дальше, чем 0,7 исходного радиуса. Напомним точное значение этой величины: √2/2.

На диаграмме показан процесс сокращения радиусов слоёв и точка начала их пересечения:

Рис. 3. Степени сжатия радиусов ободьев в зависимости от их удалённости от центра и тангенциальной скорости внешнего обода

При увеличении тангенциальной скорости внешнего края диска, его слои – ободья уменьшают собственные радиусы в разной степени. Сильнее всего уменьшается радиус внешнего края – вплоть до нуля. Видим, что обод, радиус которого равен десятой части от радиуса внешнего края диска, практически не изменяет своего радиуса. Это значит, что при сильной раскрутке внешний обод сократится до радиуса меньшего, чем внутренний, но как это будет выглядеть в реальности, пока неясно. Пока только очевидно, что деформация наступает лишь при скорости внешнего обода, превышающей √2/2 скорости света (ок. 0,71 c). До этой скорости все ободья сжимаются, не пересекая друг друга, без деформации плоскости диска, внешний радиус которого при этом уменьшится до 0,7 от исходного значения. Чтобы наглядно показать эту точку, на диаграмме приведены два смежных внешних слоя обода, имеющие почти одинаковые радиусы. Это первые «кандидаты» на взаимное пересечение при раскручивании.

Если на диск нанести равномерно концентрические окружности, через равные интервалы, то в процессе его раскручивания для внешнего наблюдателя эти окружности будут располагаться с интервалами, равномерно уменьшающимися от центра (практически исходная величина интервала) к периферии (уменьшающийся вплоть до нуля).

Для того чтобы выяснить, что произойдёт с колесом после превышения внешним ободом скорости 0,7 от скорости света, изменим форму колеса так, чтобы слои не мешали друг другу. Сдвинем слои колеса вдоль оси, превратив колесо в тонкостенный конус, воронку. Теперь при сжатии каждого слоя под ним нет других слоёв, и ничто не мешает ему сжиматься сколько угодно. Начнём раскручивать конус из состояния покоя до скорости 0,7 от скорости света и затем до скорости света, после чего уменьшим скорость в обратной последовательности. Изобразим этот процесс в виде анимации:

Рис. 4. Лоренцева деформация конуса при раскручивании. Слева вид вдоль оси конуса – воронки, справа – вид сбоку, перпендикулярно к оси. Красной тонкой линией на конусе показан его контур

На рисунке конус (воронка) показан в двух видах: вдоль оси, как всегда изображается парадокс колеса, и перпендикулярно к оси, вид сбоку, на котором виден «профиль» конуса. На виде сбоку мы отчётливо видим поведение каждого слоя-обода конуса, бывшего колеса. Каждый из этих слоёв изображён цветной линией. Эти линии повторяют соответствующие окружности, ободья, для которых построен график на предыдущем рисунке. Это позволяет увидеть каждый обод независимо от других и то, как внешний обод уменьшает свой радиус сильнее, чем внутренние.

Следует особо отметить следующие очевидные обстоятельства. Согласно теории относительности деформации диска или показанного конуса как таковой нет. Все изменения в его форме – это видимость для внешнего наблюдателя, с самим диском и конусом при этом ничего не происходит. Следовательно, он вполне может быть из абсолютно твёрдого материала. Изделия из такого материала не сжимаются, не растягиваются, не изгибаются и не скручиваются – они не подвержены никакой геометрической деформации. Поэтому видимость деформации вполне допускает и раскручивание этого диска до световой скорости. Внешний наблюдатель будет видеть, как показано на анимации, вполне логичную, хотя и довольно странную картину. Внешний обод конуса уменьшается до скорости 0,7 c, после чего продолжает сжиматься дальше. При этом внутренний обод, который имел меньший радиус, оказывается с внешней стороны. Однако, это вполне очевидное явление. По раскрашенным ободьям на анимации видно, как внешние ободья приближаются к центру диска, превращая конус в своеобразный замкнутый сосуд, амфору. Но нужно понимать, что при этом собственно конус остаётся таким, как и был изначально. Если уменьшить скорость его вращения, то все слои вернутся на свои места и амфора для неподвижного наблюдателя вновь превратится в конус. Это кажущееся перемещение слоёв, ободьев вследствие сжатия к центру диска с точки зрения внешнего наблюдателя никак не связано с реальной геометрической деформацией самого диска. Потому-то и нет никаких физических препятствий для того, чтобы конус был изготовлен из абсолютно твёрдого материала.

Но это относится к конусу. А как поведёт себя плоское колесо, в котором все слои находятся всё-таки друг над другом? В этом случае неподвижный наблюдатель увидит весьма странную картину. После того как внешний обод диска уменьшится на скорости 0,7 c, он сделает попытку дальнейшего сжатия. При этом внутренний обод, который имел меньший радиус, будет сопротивляться этому. Здесь мы напомним очевидное условие – при любой скорости диск должен оставаться плоским.

При всей странности картины можно достаточно легко догадаться о том, что произойдёт дальше. Нужно просто вспомнить рассмотренную выше картину с тонкостенным колесом, насаженным на неподвижную ось. Отличие лишь в том, что в рассмотренном случае неподвижная ось не испытывает лоренцева сокращения. Здесь же слои, он нуля до 0,7 от радиуса колеса, сами испытали сжатие и несколько уменьшили свои размеры. Не смотря на это внешние слои их всё равно «догнали». Теперь лоренцева сжатия внутренних слоёв недостаточно, они не дают внешним продолжить собственное сжатие. Как варианты мы можем выделить три сценария дальнейшего развития событий, не принимая во внимание действие центробежных сил и тот факт, что для такой раскрутки потребуется бесконечно мощный двигатель.

Для обычного материала при взаимодействии слоёв-ободьев внутренние слои испытывают деформацию сжатия, а внешние – растяжения. Следовательно, более вероятен разрыв внешних ободьев, чем упругое уменьшение объёма внутренних. Это очевидно, поскольку материал их один и тот же.

Рис. 5. Лоренцева деформация диска из обычного твёрдого материала

Здесь и на последующих анимация раскраска полос сделана наподобие «тельняшки» – более светлые цвета чередуются с более тёмными. В этом случае при сжатии диска на его разрезе лучше видно, что они не пересекают друг друга, а как бы складываются в виде «гармошки». На анимации сжатия обычного твёрдого (хрупкого) диска в красный цвет перекрашиваются слои (ободья), которые приходят в тесное соприкосновение, с силой давят друг на друга. В этом случае их материал испытывает как усилие на сжатие (внутренние слои), так и усилие на растяжение (внешние слои). При некоторых усилиях внешние слои, что более вероятно, просто будут разорваны, и разлетятся в разные стороны. Как видно на анимации, условия для разрыва наступают после достижения предельной скорости 0,7 c.

Для абсолютно эластичного материала картина немного иная. Разрыв слоёв невозможен, но возможно их бесконечное сжатие. Следовательно, при скорости внешнего обода, близкой к скорости света, для внешнего наблюдателя колесо может превратиться в бесконечно малую точку.

Рис. 6. Лоренцева деформация диска из эластичного материала

Это в том случае, если на сжатие будет необходимо меньшее усилие, чем на растяжение. Иначе форма колеса при равенстве этих сил будет оставаться неизменной. После прекращения вращения колесо примет свои первоначальные размеры без каких бы то ни было повреждений. На анимации, как и выше, видно, что слои-ободья складываются в виде «гармошки», не пересекая друг друга. Правда, здесь следовало бы показать утолщение диска в зазоре между внешним ободом и осью. Диск, очевидно, должен при сжатии принять форму бублика. При достижении скорости внешнего обода, равной скорости света, диск сожмётся в точку (вернее, в тонкую трубочку, надетую на ось).

Для абсолютно твёрдого материала колеса, который не сжимается, не растягивается и не изгибается, картина также будет отличаться от предыдущих.

Рис. 7. Лоренцева деформация диска из абсолютно твёрдого материала

Внешние ободья не могут разорваться, а внутренние – сжаться. Поэтому, разрушения ни тех, ни других не будет, но будет стремительно возрастать сила их давления друг на друга после того, как будет достигнута предельная скорость вращения. За счёт каких источников возникает эта сила? Очевидно, что за счёт сил, приводящих колесо во вращение. Следовательно, внешний источник должен будет прикладывать всё большее и большее усилие вплоть до бесконечности. Понятно, что это невозможно, и мы приходим к выводу: при достижении внешним ободом абсолютно твёрдого колеса скорости √2/2 от скорости света дальнейшего увеличения этой скорости не будет. Приводной двигатель словно упрётся в стену. Это примерно то же самое, как бежать, например, за тракторной тележкой, прицепом. Можно бежать с любой скоростью, но при достижении тележки скорость будет сразу же ограничена её скоростью, скоростью трактора.

Итак, подведём итоги. Как видим, поведение раскручиваемого колеса имеет строго согласованные и непротиворечивые предсказания в специальной теории относительности для всех вариантов парадокса колеса.

Ошибочным является вариант парадокса Эренфеста – невозможность раскрутить абсолютно твёрдое тело:

Рассуждение Эренфеста показывает невозможность приведения абсолютно твёрдого тела (изначально покоившегося) во вращение

Это ошибочные выводы, не соответствующие предсказаниям специальной теории относительности. Кроме того, в работе Эренфеста, которую следует считать первой формулировкой парадокса, нет таких рассуждений. Считается, что само по себе абсолютно твёрдое тело по определению невозможно в специальной относительности, поскольку оно позволяет производить сверхсветовую передачу сигналов. Поэтому математика СТО к таким телам изначально неприменима. Тем не менее, такое тело, как мы показали, можно раскрутить до скорости более чем в две трети от скорости света. При этом никаких парадоксов СТО не возникает, поскольку для внешнего наблюдателя происходит релятивистское сжатие круга целиком, включая его спицы. Утверждение Эренфеста и других авторов о том, что продольно спицы не сжимаются – ошибочно. Действительно, поскольку ободья движутся без проскальзывания относительно друг друга, мы можем склеить их, рассматривая их как один сплошной диск. Если теперь на таком сплошном диске мы «нарисуем» спицы, то очевидно, они будут уменьшать свою длину, следуя за уменьшением диаметров ободьев. Также спицы можно выполнить как рифление на поверхности диска и даже сделав радиальные (или под углом) пропилы внутри него. Получившиеся спицы и пустые интервалы (пространство) между ними движутся как связанные друг с другом части ободьев, то есть, являются объектами, которые сокращается как единое целое. И материал спиц, и интервал между ними испытывают тангенциальное лоренцево сокращение в равной мере, что, соответственно, приводит и к такому же их радиальному сокращению.

Ошибочным является и оригинальный, распространённый в литературе, авторский вариант парадокса Эренфеста – раскручивание обычного тела: радиус колеса одновременно равен исходному и укороченному значению.

Ошибка заключена в утверждении от имени теории относительности, что радиус (спицы) колеса не испытывает лоренцева сокращения. Но специальная теория относительности не делает такого предсказания. Согласно её предсказаниям спицы испытывают такое же лоренцево сокращение, как и обод колеса. При этом в зависимости от материала колеса его часть, превышающая 0,7 от радиуса при раскручивании обода до световой скорости, будет либо разрушена, разорвана, если материал недостаточно эластичен, либо всё колесо целиком испытает лоренцево сжатие до бесконечно малого радиуса с точки зрения внешнего наблюдателя. Если остановить колесо до его разрушения и до достижения скорости 0,7 от скорости света, то оно примет для внешнего наблюдателя свою исходную форму без каких-либо повреждений. Упругое тело при достижении скорости выше 0,7 от скорости света может испытать некоторые деформации. Например, если в нём были вкрапления из хрупкого материала, то они будут разрушены. После остановки колеса разрушения не будут восстановлены.

Таким образом, следует признать, что ни одна из рассмотренных формулировок не позволяет говорить о парадоксе. Все виды парадокса колеса, Эренфеста являются мнимыми, псевдопарадоксами. Корректное и последовательное применение математики СТО позволяет для каждой описанной ситуации сделать непротиворечивые предсказания. Под парадоксом мы понимаем правильные предсказания, которые противоречат друг другу, но здесь этого нет.

После просмотра ряда источников (который нельзя, конечно, назвать исчерпывающим), выяснилось следующее. Изложенное решение парадокса Эренфеста (парадокса колеса) является, видимо, первым с момента его формулировки Эренфестом в 1909 году корректным решением парадокса в рамках специальной теории относительности. Впервые рассмотренное решение обнаружено в октябре 2015 года и 18.10.2015 данная статья направлена для публикации на сайте Международной ассоциации учёных, преподавателей и специалистов (Российской Академии Естествознания) в разделе Заочные электронные конференции.