Характеристики, типы и принцип работы автомобильных генераторов. Принцип работы реле регулятора генератора

При возникновении проблем с аккумулятором автомобиля, следует обратить внимание на работу реле регулятора напряжения. Какие проблемы могут быть с АКБ? Он перестал заряжаться от генератора и быстро разряжается или, наоборот, перезаряжается. В этом случае, как раз требуется проверка реле напряжения генератора.

Реле-регулятор напряжения должен отключиться при напряжении 14,2-14,5 Вольт.

Для чего нужен регулятор напряжения в автомобиле

Это небольшое простое устройство выполняет важную функцию — регулировка напряжения. То есть, если напряжение больше положенного, регулятор должен уменьшать его, а, если напряжение меньше положенного, регулятор должен поднять его.

Какое напряжение регулирует реле генератора?

Заведенные двигатель обеспечивает работу генератора, который вырабатывает и передает напряжение электрического тока аккумулятору.

При неправильной работе регулятора напряжения, аккумулятор автомобиля быстро сажает свой ресурс. Регулятор называют иногда таблеткой или шоколадкой.

Виды и типы реле регуляторов

В зависимости от вида реле, зависит и метод определения работоспособности. Регуляторы классифицируются на 2 типа:

  • совмещенные;
  • отдельные.

Совмещенные реле — это значит, что само реле с щеточным узлом расположен в корпусе генератора.

Отдельные реле — это значит, что реле вынесено за корпус генератора и крепится на кузове автомобиля. Видели наверное, черный небольшой приборчик закреплен на крыле машины, к нему идут провода от генератора, а от него к аккумулятору.

Отличительной особенностью регуляторов от других устройств в том, что реле состоят из неразборного корпуса. При сборке, корпус склеивают герметиком или спец смолой. Нет смысла его разбирать и ремонтировать, так как такие электрические приборы стоят недорого.

Признаки неисправностей

Если напряжение низкое, то АКБ не сможет заряжаться. Таким образом, аккумуляторная батарея быстро сядет.

Если после реле-регулятора напряжение к аккумулятору идет высокое (выше положенного), то электролит начнет закипать и испаряться. При этом, на аккумуляторе появляется белый налет.

Какие признаки поломки регулятора напряжения генератора автомобиля могут быть:

  1. После поворота ключа замка зажигания, контрольная лампа не загорается.
  2. После того, как двигатель завелся, индикатор аккумулятора не гаснет на панели приборов.
  3. В темное время суток можно наблюдать, как свет становится, то ярче, то тусклее.
  4. ДВС автомобиля не запускается с первого раза.
  5. Если обороты двигателя станут больше 2000, то могут отключаться все лампочки приборной панели.
  6. Потеря мощности двигателя.
  7. Закипание аккумулятора.

Причины неправильной работы реле

К причинам можно отнести следующие наблюдения:

  1. Короткое замыкание (КЗ) на какой-нибудь линии автомобильной электропроводки.
  2. Пробиты диоды. Выпрямительный мост накрылся.
  3. Неправильно подключены клеммы аккумулятора.
  4. Попала вода внутрь реле.
  5. Механическое повреждение корпуса.
  6. Износ щеток.
  7. Кончился ресурс реле.

Как быстро и просто проверить регулятор напряжения

Взять мультиметр или вольтметр и замерить на клеммах аккумулятора напряжение. Проверку делают в следующем порядке:

  1. Поставить прибор в режим измерения напряжения на отметку до 20 В.
  2. Завести ДВС.
  3. На холостом ходу замерить напряжение на клеммах АКБ. В режиме ХХ обороты двигателя от 1000 до 1500 об/мин. Если генератор и регулятор напряжения исправны, то вольтметр должен показывать напряжение от 13,4 до 14 Вольт.
  4. Поднять обороты двигателя до 2000-2500 оборотов в минуту. Теперь значение напряжение при исправно рабочем генераторе и реле, мультиметр (вольтметр, тестер) должен показывать напряжение от 13,6 до 14,2 В.
  5. Далее, нажать на газ и довести обороты ДВС до 3500 об/мин. Напряжение исправных устройств должно быть не более 14,5 Вольт.

Минимальное допустимое напряжение, которое должно выдавать исправный генератор и релерегулятор напряжения — это 12 Вольт. А максимальное — 14,5 Вольт. Если прибор показывает значение напряжения меньше 12 В или более 14,5 В, то регулятор напряжения надо менять.

В новых автомобилях, в основном, реле совмещенное с генератором. Это помогает избежать протяжку отдельных проводов и экономит место.

Как проверить совмещенное реле

Например, рассмотрим регулятор машины ВАЗ 2110. Чтобы проверить, работает ли реле, надо собрать такую схему, как на рисунке.

Реле регулятор ВАЗ 2110 — 37.3701:

  • 1 - аккумуляторная батарея;
  • 2 - вывод «масса» регулятора напряжения;
  • 3 - регулятор напряжения;
  • 4 – вывод «Ш» регулятора;
  • 5 - вывод «В» регулятора;
  • 6 - контрольная лампа;
  • 7 - вывод «Б» регулятора напряжения.

При сборке такой схемы со стандартным напряжением 12.7 Вольт, то лампочка должна просто светиться.

Если напряжение регулятора поднять до 14-14.5 Вольт, то лампочка должна потухнуть. Если лампочка не погасла при таком высоком напряжении, значит регулятор неисправен.

Проверка регулятора ВАЗ 2107

До 1996 г. на классические авто ВАЗ 2107 с генератором шифра 37.3701 оснащался регулятор напряжения старого образца (17.3702). Если установлено такое реле, то проверять следует, как на десятке (рассмотрели выше).

После 1996 г. начали устанавливать новый генератор марки Г-222 (стоит интегральный регулятор РН Я112В (В1).

Проверка отдельно регулятора

Регулятор генератора Г-222:

  • 1 - аккумуляторная батарея;
  • 2 - регулятор напряжения;
  • 3 - контрольная лампа.

Для проверки, надо собрать схему, приведенную на рисунке. При нормальном рабочем напряжении 12 В, лампочка должна просто светиться. Если напряжение доходит до 14,5 Вольт, то лампочка должна гаснуть, а при понижении — опять загораться.

Проверка реле типа 591.3702-01

Схема проверки реле:

Такие старые модели реле устанавливают еще иногда на классику ВАЗ 2101-ВАЗ 2107, на машины ГАЗ, Волга, Москвич.

Реле крепится на кузове. Проверяется по такой же схеме, как и предыдущие. Но, надо знать маркировку контактов:

  • «67» — это контакт минус (-).
  • «15» — это плюс.

Процесс проверки такой же. При нормальном напряжении, 12 Вольт и до 14 В — лампочка должна гореть. Если ниже или выше, лампочка должна гаснуть.

РР-380

Регулятор марки РР-380 устанавливался на автомобили ВАЗ 2101 и ВАЗ 2102. Регулируемое напряжение при температуре регулятора и окружающей среды (50±3)° С, В:

  • на первой ступени не более 0,7
  • на второй ступени 14,2 ± 0,3
  • Сопротивление между штекером «15» и массой, Ом 17,7 ± 2
  • Сопротивление между штекером «15» и штекером «67» при разомкнутых контактах, Ом 5,65 ± 0,3
  • Воздушный зазор между якорем и сердечником, мм 1,4 ± 0,07
  • Расстояние между контактами второй ступени, мм 0,45 ± 0,1.

Проверка трехуровневого реле

По названию понятно, что такие реле имеют три уровни подачи напряжения. Это более продвинутый вариант. Уровни значения напряжения, при котором аккумулятор будет отсоединяться от регулятора напряжения можно задать вручную, например: 13.7 В, 14.2В, 14.7В.

Как проверить генератор

Для проверки работоспособности, надо:

  1. Отключить провода, идущие на клеммы 67 и 15 регулятора.
  2. Подсоединить к проводам лампочку. В обход реле.
  3. Отсоединить плюсовую клемму АКБ.

Если машин не заглохла, значит генератор работает.

Как увеличить ресурс реле

  • Проверять натяжение ремня генератора.
  • Не допускать сильного загрязнения генератора.
  • Проверять контакты.
  • Осматривать аккумулятор. Если на корпусе АКБ есть белый налет, значит от реле идет напряжение больше положенного и электролит закипает.

Видео

Полезное видео для автоэлектриков.

Как работает генератор и реле напряжения.

Когда реле напряжения ломается, появляются проблемы в работе электрооборудования. Причин, вызвавших сбой в регуляторе напряжения, может быть много, но самая распространенная из них – выкипание электролита в аккумуляторе. Регулятор напряжения (РН) ремонту не подлежит, его просто меняют на новый. Однако прежде чем его сменить, нужно убедиться, что неисправен именно он. Проверить реле-регулятор генератора можно самостоятельно.

В машине и в других средствах передвижения для нормального функционирования электрооборудования и других систем необходим постоянный ток -13,5–14,5 В. Если напряжение недотягивает до нормы или наоборот ее превышает, электроприборы начнут выходить из строя, а аккумуляторная батарея из-за избытка заряда сократит свой эксплуатационный срок. Реле-регулятор выступает стабилизатором этого бортового напряжения в заданных пределах, в зависимости от электрической нагрузки, частоты вращения ротора генератора и температуры окружающей среды. Он пропускает допустимое напряжение в бортовую сеть автомобиля, тем самым обеспечивая ее требуемыми параметрами.

Реле-регулятор напряжения

Типы реле напряжения и их устройство

Если утрировать, то видов устройства два и работают они оба по одному принципу:

  • отдельные или контактные . Устанавливается на кузове транспортного средства под капотом посредством кронштейнов. Сначала провода отходят от генератора, а потом идут на АКБ. Этот тип встречается реже, так как был выпущен лет 30 назад. Также есть модифицированные модели, которые только входят в использование. Их ключевыми элементами конструкции выступают:
  1. Два блока сопротивления;
  2. Намагничивающая катушка;
  3. Контактная группа;
  4. Металлический сердечник.
  • совмещенные или электронные со щеточным узлом . Монтируется прямо на генератор. Месторасположения реле в корпусе со щетками.

Общее у обоих – неразборные корпуса, часто они просто залиты герметиками или особым клеем. Так как они не подлежат ремонту, то цена на них низкая. Раньше был еще один тип – совмещенный с клеммами, но большого распространения он не получил, поэтому рассказывать о них не стоит.

Старый и новый реле-регуляторы

Внешние признаки поломки

Признаками неисправного реле могут выступать:

  • перезарядка АКБ (не хватает выделяемого заряда или выкипает электролит);
  • яркость свечения фар (меняется во время поломки, когда на оборотах вала 2 тыс./мин. Уровень напряжения выше нормы);
  • запах гари внутри в салона .

Почему ломается

Нынешние реле гораздо долговечнее предшественников, но ничто не застраховано от сбоев. Способствовать этому могут, такие факторы как:

  • короткое замыкание;
  • проникание влаги (может случиться во врем мытья автомобиля);
  • механические повреждения ;
  • качество самого изделия (покупка устройства неизвестных производителей не гарантирует долгий срок службы).

Когда реле сломалось и происходит перезаряд, то нужно провести диагностику неполадки. Есть два способа проверки регулятора напряжения генератора – не снятого с машины или снятого . Рассмотрим оба варианта.

Проверка напряжения не снимая реле-регулятор

Как проверить реле-регулятора не снимая с машины?

Выявить «нехватку заряда» или «перезаряд» АКБ просто. При нехватке – машина не запустится, или же после вставления ключа мотор медленно начнет крутиться, иногда это сопровождается затуханием лампочек. При перезаряде – те же самые признаки, только причина будет крыться в закипании электролита. Понять это можно по его количеству в банках или белому налету на самом АКБ и вокруг него. Но следует убедиться точно, протестировав бортовой ток с помощью мультиметра, которым нужно измерить напряжение на клеммах батареи во время рабочего двигателя. Подметим, что нормальным напряжением может быть параметр – 12,7В, но если он ниже, например – 12В, то имеются неполадки.

Очень часто виновником проблем могут быть сами клеммы, так как способны окисляться, поэтому перед проверкой необходимо убрать имеющиеся налеты и закиси на клеммах и контактах.

Этапы работы:

  1. Запустить двигатель и прогреть несколько минут.
  2. Подсоединить щупы мультиметра к клеммам батареи, соблюдая полярность. Выставить значение на устройстве в 20 Вольт.
  3. Смотрим напряжение при включенном ближнем свете, в это время все остальные электропотребители должны быть отключены. Обороты вала должны быть в значениях — 1,5–2,5 тыс. об/мин. Если напряжение в пределах 13,5–14,8В , это нормально, а если превышает, то реле негодное. В том случае, когда входящий ток меньше 13,5В, то возможно, причина сбоя либо в генераторе, либо в проводке.
  4. Теперь поднимаем нагрузку и оцениваем при увеличенных оборотах до 2000–2500 тыс. об/мин. Для этого запускаем дальний свет, печку, стеклоочистители. Напряжение не должно быть меньше 13,5В и больше 14,8В.

Как проверить регулятор напряжения генератора мультиметром мы рассказали, теперь приступаем к проверке совмещенной схемы реле-регулятора вместе со щеточным узлом, так как они наиболее популярны.

Проверка реле-регулятора

Тестирование снятого регулятора (со схемой)

Электронное реле чаще всего крепится на поверхности генератора рядом с валом генератора, по которому двигаются щетки, в районе контактных колец якоря генератора. Весь совмещенный узел закрыт пластиковой крышкой. Снимается она отверткой форма, которой может быть либо крестовидной, либо шестигранник.

Этапы проведения работ:


По тому же принципу можно проверить отдельный тип регулятора нового образца. Для этого необходимо отсоединить его от кузова или крышки генератора и прикрепить к схеме. Проверку осуществлять таким же образом. Что касается старого типа реле-регулятора, установленного на копейках, то проверять его нужно немного по-другому. Их маркировка – «67» и «15» . Первый контакт «67» - является минусом, а «15» - плюсом. В остальном принцип тот же.

Рис. 1. Способы управления током возбуждения: Г - генератор с параллельным возбуждением; W в - обмотка возбуждения; R д - дополнительное сопротивление; R - балластное сопротивление; К - коммутатор тока (регулирующий орган) в цепи возбуждения; а, б, в,г, д указаны в тексте.

Современный автомобильный двигатель внутреннего сгорания (ДВС) работает в широком интервале изменения оборотов (900:.. 6500 об/мин). Соответственно изменяется и частота вращения ротора автомобильного генератора, а значит и его выходное напряжение.

Зависимость выходного напряжения генератора от оборотов двигателя внутреннего сгорания недопустима, так как напряжение в бортовой сети автомобиля должно быть постоянным и не только при изменении оборотов двигателя, но и при изменении тока нагрузки. Функцию автоматического регулирования напряжения в автомобильном генераторе выполняет специальное устройство - регулятор напряжения автомобильных генераторов . Данный материал посвящен рассмотрению регуляторов напряжения современных автомобильных генераторов переменного тока.

Регулирование напряжения в генераторах с электромагнитным возбуждением

Способы регулирования . Если главное магнитное поле генератора наводится электромагнитным возбуждением, то электродвижущая сила E г генератора может быть функцией двух переменных: частоты n вращения ротора и тока I в в обмотке возбуждения - E г = f(n, I в).

Именно такой тип возбуждения имеет место во всех современных автомобильных генераторах переменного тока, которые работают с параллельной обмоткой возбуждения.

При работе генератора без нагрузки его напряжение U г равно его электродвижущей силе ЭДС E г:
U г = E г = СФ n (1).

Напряжете U г генератора под током I н нагрузки меньше ЭДС E г на величину падения напряжения на внутреннем сопротивлении r г генератора, т.е. можно записать, что
E г = U г + I н r г = U г (1 + β) (2).

Величина β = I н r г /U г называется коэффициентом нагрузки.

Из сравнения формул 1 и 2 следует, что напряжение генератора
U г = nСФ/(1 + β), (3)
где С - постоянный конструктивный коэффициент.

Уравнение (3) показывает, что как при разных частотах (n) вращения ротора генератора (n = Var), так и при изменяющейся нагрузке (β = Var), неизменность напряжения U г генератора может быть получена только соответствующим изменением магнитного потока Ф.

Магнитный поток Ф в генераторе с электромагнитным возбуждением формируется магнитодвижущей силой F в = W I в обмотки W в возбуждения (W - число витков обмотки W в) и может легко управляться с помощью тока I в в обмотке возбуждения, т.е. Ф = f (I в). Тогда U г = f 1 что позволяет удерживать напряжение U г генератора в заданных пределах регулирования при любых изменениях его оборотов и нагрузки соответствующим выбором функции f(I в) регулирования.

Автоматическая функция f(I в) регулирования в регуляторах напряжения сводится к уменьшению максимального значения тока I в в обмотке возбуждения, которое имеет место при I в = U г /R w (R w - активное сопротивление обмотки возбуждения) и может уменьшаться несколькими способами (рис. 1): подключением к обмотке W в параллельно (а) или последовательно (б) дополнительного сопротивления R д: закорачиванием обмотки возбуждения (в); разрывом токовой цепи возбуждения (г). Ток через обмотку возбуждения можно и увеличивать, закорачивая последовательное дополнительное сопротивление (б).

Все эти способы изменяют ток возбуждения скачкообразно, т.е. имеет место прерывистое (дискретное) регулирование тока. В принципе возможно и аналоговое регулирование, при котором величина последовательного дополнительного сопротивления в цепи возбуждения изменяется плавно (д).

Но во всех случаях напряжение U г генератора удерживается в заданных пределах регулирования соответствующей автоматической корректировкой величины тока возбуждения.

Дискретно - импульсное регулирование

В современных автомобильных генераторах магнитодвижущую силу F в обмотки возбуждения, а значит и магнитный поток Ф, изменяют периодическим прерыванием или скачкообразным уменьшением тока I в возбуждения с управляемой частотой прерывания, т.е. применяют дискретно-импульсное регулирование рабочего напряжения U г генератора (ранее применялось аналоговое регулирование, например, в угольных регуляторах напряжения).

Суть дискретно-импульсного регулирования станет понятной из рассмотрения принципа действия генераторной установки, состоящей из простейшего контактно-вибрационного регулятора напряжения, и генератора переменного тока (ГПТ).


Рис. 2. Функциональная (а) и электрическая (б) схемы генераторной установки с вибрационным регулятором напряжения.

Функциональная схема генераторной установки, работающей совместно с бортовой аккумуляторной батареей (АКБ), показана на рис. 2а, а электрическая схема - на рис. 26.

В состав генератора входят: фазные обмотки W ф на статоре СТ, вращающийся ротор R, силовой выпрямитель ВП на полупроводниковых диодах VD, обмотка возбуждения W в (с активным сопротивлением R w). Механическую энергию вращения A м = f (n) ротор генератора получает от ДВС. Вибрационный регулятор напряжения РН выполнен на электромагнитном реле и включает в себя коммутирующий элемент КЭ и измерительный элемент ИЭ.

Коммутирующий элемент КЭ - это вибрационный электрический контакт К, замыкающий или размыкающий дополнительное сопротивление R д, которое включено с обмоткой возбуждения W в генератора последовательно. При срабатывании коммутирующего элемента (размыкание контакта К) на его выходе формируется сигнал τR д (рис. 2а).

Измерительный элемент (ИЭ, на рис. 2а) - это та часть электромагнитного реле, которая реализует три функции:

  1. функцию сравнения (СУ) механической упругой силы F n возвратной пружины П с магнитодвижущей силой F s = W s I s релейной обмотки S (W s - число витков обмотки S, I s - ток в релейной обмотке), при этом результатом сравнения является сформированный в зазоре с период Т (Т = t р + t з) колебаний якоря N;
  2. функцию чувствительного элемента (ЧЭ) в цепи обратной связи (ЦОС) регулятора напряжения, чувствительным элементом в вибрационных регуляторах является обмотка S электромагнитного реле, подключенная непосредственно к напряжению U г генератора и к аккумуляторной батарее (к последней через ключ зажигания ВЗ);
  3. функцию задающего устройства (ЗУ), которое реализуется с помощью возвратной пружины П с силой упругости F п и опорной силой F о.

Работа регулятора напряжения с электромагнитным реле наглядно может быть пояснена с помощью скоростных характеристик генератора (рис. 3 и 4).


Рис. 3. Изменение U г, I в, R б во времени t: а - зависимость текущего значения выходного напряжения генератора от времени t - U г = f (t); б - зависимость текущего значения в обмотке возбуждения от времени - I в = f (t); в - зависимость среднеарифметического значения сопротивления в цепи возбуждения от времени t - R б = f(t); I - время, отвечающее частоте (n) вращения ротора генератора.

Пока напряжение U г генератора ниже напряжения U б аккумуляторной батареи (U г

При увеличении оборотов ДВС напряжение генератора возрастает и при достижении некоторого значения U max) > U б) магнитодвижущая сила F s релейной обмотки становится больше силы F п возвратной пружины П, т.е. F s = I s W s > F п. Электромагнитное реле срабатывает и контакт К размыкается, при этом в цепь обмотки возбуждения включается дополнительное сопротивление.

Еще до размыкания контакта К ток I в в обмотке возбуждения достигает своего максимального значения I в max = U г R w > I вб, от которого, сразу после размыкания контакта К, начинает падать, стремясь к своему минимальному значению I в min = U г /(R w + R д). Вслед за падением тока возбуждения напряжение генератора начинает соответственно уменьшаться (U г = f(I в), что приводит к падению тока I s = U г /R s в релейной обмотке S и контакт К вновь размыкается усилием возвратной пружиной П (F п > F s). К моменту размыкания контакта К напряжение генератора U г становится равным своему минимальному значению U min , но остается несколько больше напряжения аккумуляторной батареи (U гmin > U б).

Начиная с момента размыкания контакта К (n = n min , рис. 3), даже при неизменной частоте n вращения ротора генератора, якорь N электромагнитного реле входит в режим механических автоколебаний и контакт К, вибрируя, начинает периодически, с определенной частотой коммутации f к = I/Т = I/(t р + t з) то замыкать, то размыкать дополнительное сопротивление R д в цепи возбуждения генератора (зеленая линия на участке n = n ср = const, рис. 3). При этом сопротивление R в в токовой цепи возбуждения изменяется скачкообразно от значения R w до величины R w +R д.

Так как при работе регулятора напряжения контакт К вибрирует с достаточно высокой частотой f к коммутации, то R в = R w + τ р где величина τ р - это относительное время разомкнутого состояния контакта К, которое определяется по формуле τ р = t р /(t з + t р), I/(t з + t р) = f к - частота коммутации. Теперь среднее, установившееся для данной частоты f к коммутации, значение тока возбуждения может быть найдено из выражения:

I в ср = U г ср /R в = U г ср /(R w +τ р R д) = U г ср /(R w + R д t р /f к),
где R в - среднеарифметическое (эффективное) значение пульсирующего сопротивления в цепи возбуждения, которое при увеличении относительного времени τ р разомкнутого состояния контакта К также увеличивается (зеленая линия на рис. 4).


Рис. 4. Скоростные характеристики генератора.

Процессы при коммутациях с током возбуждения

Рассмотрим более подробно, что происходит при коммутациях с током возбуждения. Когда контакт К длительно замкнут, по обмотке W в возбуждения протекает максимальный ток возбуждения I в = U г /R w .

Однако обмотка возбуждения W в генератора представляет собой электропроводную катушку с большой индуктивностью и с массивным ферромагнитным сердечником. Как следствие, ток через обмотку возбуждения после замыкания контакта К нарастает с замедлением. Это происходит потому, что скорости нарастания тока препятствует гистерезис в сердечнике и противодействующая нарастающему току - ЭДС самоиндукции катушки.

При размыкании контакта К ток возбуждения стремится к минимальной величине, значение которой при длительно разомкнутом контакте определяется как I в = U г /(R w + R д). Теперь ЭДС самоиндукции совпадает по направлению с убывающим током и несколько продлевает процесс его убывания.

Из сказанного следует, что ток в обмотке возбуждения не может изменяться мгновенно (скачкообразно, как дополнительное сопротивление R д) ни при замыкании, ни при размыкании цепи возбуждения. Более того, при высокой частоте вибрации контакта К ток возбуждения может не достигать своей максимальной или минимальной величины, приближаясь к своему среднему значению (рис. 4), так как величина t р = τ р /f к увеличивается с увеличением частоты f к коммутации, а абсолютное время t з замкнутого состояния контакта К уменьшается.

Из совместного рассмотрения диаграмм, показанных на рис. 3 и рис. 4, вытекает, что среднее значение тока возбуждения (красная линия б на рис. 3 и рис. 4) при повышении оборотов n уменьшается, так как при этом увеличивается среднеарифметическая величина (зеленая линия на рис. 3 и рис. 4) суммарного, пульсирующего во времени, сопротивления R в цепи возбуждения (закон Ома). При этом среднее значение напряжения генератора (U ср на рис. 3 и рис. 4) остается неизменным, а выходное напряжение U г генератора пульсирует в интервале от U max до U min .

Если же увеличивается нагрузка генератора, то регулируемое напряжение U г первоначально падает, при этом регулятор напряжения увеличивает ток в обмотке возбуждения настолько, что напряжение генератора обратно повышается до первоначального значения.

Таким образом, при изменении тока нагрузки генератора (β = V ar) процессы регулирования в регуляторе напряжения протекают так же, как и при изменении частоты вращения ротора.

Пульсации регулируемого напряжения . При постоянной частоте n вращения ротора генератора и при постоянной его нагрузке рабочие пульсации тока возбуждения (ΔI в на рис. 46) наводят соответствующие (по времени) пульсации регулируемого напряжения генератора.

Амплитуда пульсаций ΔU г - 0,5(U max - U min)* регулятора напряжения U г от амплитуды тоновых пульсаций ΔI в в обмотке возбуждения не зависит, так как определяется заданным с помощью измерительного элемента регулятора интервалом регулирования. Поэтому пульсации напряжения U г на всех частотах вращения ротора генератора практически одинаковы. Однако скорость нарастания и спада напряжения U г в интервале регулирования определяется скоростью нарастания и спада тока возбуждения и, в конечном счете, частотой вращения (n) ротора генератора.

* Следует заметить, что пульсации 2ΔU г являются неизбежным и вредным побочным проявлением работы регулятора напряжения. В современных генераторах они замыкаются на массу шунтирующим конденсатором Сш, который устанавливается между плюсовой клеммой генератора и корпусом (обычно Сш = 2,2 мкФ)

Когда нагрузка генератора и частота вращения его ротора не изменяются, частота вибрации контакта К также неизменна (f к = I/(t з + t р) = const). При этом напряжение U г генератора пульсирует с амплитудой ΔU р = 0,5(U max - U min) около своего среднего значения U ср.

При изменении частоты вращения ротора, например, в сторону увеличения или при уменьшении нагрузки генератора, время t з замкнутого состояния становится меньше времени t р разомкнутого состояния (t з

При уменьшении частоты ротора генератора (n↓), или при увеличении нагрузки (β), среднее значение тока возбуждения и его пульсации будут расти. Но напряжение генератора будет попрежнему колебаться с амплитудой ΔU г вокруг неизменной величины U г ср.

Постоянство среднего значения напряжения U г генератора объясняется тем, что оно определяется не режимом работы генератора, а конструктивными параметрами электромагнитного реле: числом витков W s релейной обмотки S, ее сопротивлением R s , величиной воздушного зазора σ между якорем N и ярмом М, а также силой F п возвратной пружины П, т.е. величина U ср есть функция четырех переменных: U ср = f(W s , R s , σ, F п).

Электромагнитное реле с помощью подгиба опоры возвратной пружины П настраивается на величину U ср таким образом, чтобы на нижней частоте вращения ротора (n = n min - рис. 3 и рис. 4) контакт К начинал бы размыкаться, а ток возбуждения успевал бы достигать своего максимального значения I в = U г /R w . Тогда пульсации ΔI в и время t з, замкнутого состояния - максимальны. Этим устанавливается нижний предел рабочего диапазона регулятора (n = n min). На средних частотах вращения ротора время t з примерно равно времени t р, и пульсации тока возбуждения становятся почти в два раза меньше. На частоте вращения n, близкой к максимальной (n = n max - рис. 3 и рис. 4), среднее значение тока I в и его пульсации ΔI в - минимальны. При n max происходит срыв автоколебаний регулятора и напряжение U г генератора начинает возрастать пропорционально оборотам ротора. Верхний предел рабочего диапазона регулятора задается величиной дополнительного сопротивления (при определенной величине сопротивления R w).

Выводы . Вышесказанное о дискретно-импульсном регулировании можно обобщить следующим образом: после пуска двигателя внутреннего сгорания (ДВС), с повышением его оборотов, наступает такой момент, когда напряжение генератора достигает верхнего предела регулирования (U г = U max). В этот момент (n = n min) в регуляторе напряжения размыкается коммутирующий элемент КЭ и сопротивление в цепи возбуждения скачкообразно увеличивается. Это приводит к уменьшению тока возбуждения и, как следствие, к соответствующему падению напряжения U г генератора. Падение напряжения U г ниже минимального предела регулирования (U г = U min) приводит к обратному замыканию коммутирующего элемента КЭ и ток возбуждения начинает снова возрастать. Далее, с этого момента, регулятор напряжения входит в режим автоколебаний и процесс коммутации тока в обмотке возбуждения генератора периодически повторяется, даже при постоянной частоте вращения ротора генератора (n = const).

При дальнейшем увеличении частоты вращения n, пропорционально ей, начинает уменьшаться время t з замкнутого состояния коммутирующего элемента КЭ, что приводит к плавному уменьшению (в соответствии с ростом частоты n) среднего значения тока возбуждения (красная линия на рис. 3 и рис. 4) и амплитуды ΔI в его пульсации. Благодаря этому напряжение U г генератора начинает также пульсировать, но с постоянной амплитудой ΔU г около своего среднего значения (U г = U ср) с достаточно высокой частотой колебаний.

Те же процессы коммутации тока I в и пульсации напряжения U г, будут иметь место и при изменении тока нагрузки генератора (см. формулу 3).

В обоих случаях среднее значение напряжения U г генератора остается неизменным во всем диапазоне работы регулятора напряжения по частоте n (U г ср = const, от n min до n max) и при изменении тока нагрузки генератора от I г = 0 до I г = max.

В сказанном заключается основной принцип регулирования напряжения генератора с помощью прерывистого изменения тока в его обмотке возбуждения.

Электронные регуляторы напряжения автомобильных генераторов

Рассмотренный выше вибрационный регулятор напряжения (ВРН) с электромагнитным реле (ЭМ-реле) имеет ряд существенных недостатков:

  1. как механический вибратор ВРН ненадежен;
  2. контакт К в ЭМ-реле подгорает, что делает регулятор недолговечным;
  3. параметры ВРН зависят от температуры (среднее значение U ср рабочего напряжения U г генератора плавает);
  4. ВРН не может работать в режиме полного обесточивания обмотки возбуждения, что делает его низкочувствительным к изменению выходного напряжения генератора (высокие пульсации напряжения U г) и ограничивает верхнии предел работы регулятора напряжения;
  5. электромеханический контакт К электромагнитного реле ограничивает величину максимального тока возбуждения до значений 2...3 А, что не позволяет применять вибрационные регуляторы на современных мощных генераторах переменного тока.

С появлением полупроводниковых приборов контакт К ЭМ-реле стало возможным заменить эмиттерно-коллекторным переходом мощного транзистора с его управлением по базе тем же контактом К ЭМ-реле.

Так появились первые контактно-транзисторные регуляторы напряжения. В дальнейшем функции электромагнитного реле (СУ, КЭ, УЭ) были полностью реализованы с помощью низкоуровневых (малоточных) электронных схем на полупроводниковых приборах. Это позволило изготавливать чисто электронные (полупроводниковые) регуляторы напряжения.

Особенностью работы электронного регулятора (ЭРН) является то, что в нем отсутствует дополнительный резистор R д, т.е. в цепи возбуждения реализуется практически полное выключение тока в обмотке возбуждения генератора, так как коммутирующий элемент (транзистор) в закрытом (разомкнутом) состоянии имеет достаточно большое сопротивление. При этом становится возможным управление более значительным током возбуждения и с более высокой скоростью коммутации. При таком дискретно-импульсном управлении ток возбуждения имеет импульсный характер, что позволяет управлять как частотой импульсов тока, так и их длительностью. Однако основная функция ЭРН (поддержание постоянства напряжения U г при n = Var и при β = Var) остается такой же, как и в ВРН.

С освоением микроэлектронной технологии регуляторы напряжения сначала стали выпускаться в гибридном исполнении, при котором бескорпусные полупроводниковые приборы и навесные миниатюрные радиоэлементы включались в электронную схему регулятора вместе с толстопленочными микроэлектронными резистивными элементами. Это позволило значительно уменьшить массу и габариты регулятора напряжения.

Примером такого электронного регулятора напряжения может служить гибридно-интегральный регулятор Я-112А, который устанавливается на современных отечественных генераторах.

Регулятор Я-112А (см. схему на рис. 5) является типичным представителем схемотехнического решения задачи дискретно-импульсного регулирования напряжения U г генератора по току I в возбуждения. Но в конструктивном и технологическом исполнении выпускаемые в настоящее время электронные регуляторы напряжения имеют значительные различия.

Рис. 5. Принципиальная схема регулятора напряжения Я-112А: R1...R6 - толстопленочные резисторы: C1, С2 - навесные миниатюрные конденсаторы; V1...V6 - бескорпусные полупроводниковые диоды и транзисторы.

Что касается исполнения регулятора Я-112А, все его полупроводниковые диоды и триоды бескорпусные и смонтированы по гибридной технологии на общей керамической подложке совместно с пассивными толстопленочными элементами. Весь блок регулятора герметичен.

Регулятор Я-112А, как и описанный выше вибрационный регулятор напряжения, работает в прерывистом (ключевом) режиме, когда управление током возбуждения не аналоговое, а дискретно-импульсное.

Принцип работы регулятора напряжения Я-112А автомобильных генераторов

Пока напряжение U г генератора не превышает наперед заданного значения, выходной каскад V4-V5 находится в постоянно открытом состоянии и ток I в обмотки возбуждения напрямую зависит от напряжения U г генератора (участок 0-n на рис. 3 и рис. 4). По мере увеличения оборотов генератора или уменьшения его нагрузки U г становится выше порога срабатывания чувствительной входной схемы (V1, R1-R2), стабилитрон пробивается и через усилительный транзистор V2 выходной каскад V4-V5 закрывается. При этом ток I в в катушке возбуждения выключается до тех пор, пока U г снова станет меньше заданного значения U min . Таким образом, при работе регулятора ток возбуждения протекает по обмотке возбуждения прерывисто, изменяясь от I в = 0 до I в = I max . При отсечке тока возбуждения напряжение генератора сразу не падает, так как имеет место инерционность размагничивания ротора. Оно может даже несколько увеличиться при мгновенном уменьшении тока нагрузки генератора. Инерционность магнитных процессов в роторе и ЭДС самоиндукции в обмотке возбуждения исключают скачкообразное изменение напряжение генератора как при включении тока возбуждения, так и при его выключении. Таким образом, пилообразная пульсация напряжения U г генератора остается и при электронном регулировании.

Логика построения принципиальной схемы электронного регулятора следующая. V1 - стабилитрон с делителем R1, R2 образуют входную цепь отсечки тока I в при U г > 14,5 В; транзистор V2 управляет выходным каскадом; V3 - запирающий диод на входе выходного каскада; V4, V5 - мощные транзисторы выходного каскада (составной транзистор), включенные последовательно с обмоткой возбуждения (коммутирующий элемент КЭ для тока I в); V6 шунтирующий диод для ограничения ЭДС самоиндукции обмотки возбуждения; R4, C1, R3 цепочка обратной связи, ускоряющая процесс отсечки тока I в возбуждения.

Еще более совершенным регулятором напряжения является электронный регулятор в интегральном исполнении. Это такое исполнение, при котором все его компоненты, кроме мощного выходного каскада (обычно это составной транзистор), реализованы с помощью тонкопленочной микроэлектронной технологии. Эти регуляторы настолько миниатюрны, что практически не занимают никакого объема и могут устанавливаться непосредственно на корпусе генератора в щеткодержателе.

Примером конструктивного исполнения ИРН может служить регулятор фирмы BOSCH-EL14V4C, который устанавливается на генераторах переменного тока мощностью до 1 кВт (рис. 6).

Электрическая сеть любого автомобиля питается за счет генератора, который приводится во вращение двигателем при помощи ременной передачи. Его обороты постоянно меняются, начиная от 900 и заканчивая несколькими тысячами, вызывая соответствующее вращение ротора. Для нормальной работы всех электроприборов и зарядки аккумулятора, в бортовой сети напряжение должно быть стабильным, что обеспечивает реле-регулятор. Являясь самым слабым звеном в системе электроснабжения, устройство в первую очередь нуждается в проверке при обнаружении неполадок зарядки АКБ и других поломках электросети автомобиля.

Принцип работы

Регулятор напряжения автогенератора предназначен для поддержания напряжения бортовой сети в необходимых пределах при любом режиме работы и различной частоте вращения генератора, изменении нагрузки и перепадах внешней температуры. Также он способен выполнять дополнительные функции – защищать генератор от перегрузок и аварийного режима работы, автоматически подключать к бортовой цепи обмотки возбуждения или систему сигнализации аварии генератора.

Работа любого регулятора напряжения основана на одном и том же принципе, и определяется следующими факторами:

  1. Частотой оборотов ротора.
  2. Силой тока, которую генератор отдает в нагрузку.
  3. Показателем магнитного потока, которую создает ток обмотки возбуждения.

Более высокие обороты ротора определяют повышение напряжения генератора. Рост силы тока на обмотке возбуждения делает сильнее магнитный поток, и одновременно напряжение. Любой регулятор напряжения стабилизирует его за счет изменения тока возбуждения. При росте или снижении напряжения, регулятор понижает или повышает ток возбуждения, регулируя напряжение в необходимых пределах.

Сам реле-регулятор представляет собой электронную схему с выходами к графитным щеткам. Его устанавливают как в самом корпусе генератора рядом со щетками, так и вне его, и тогда щетки крепятся к щеткодержателю.

Неисправности

Чаще всего реле-регулятор выходит из строя по следующим причинам:

  1. При исправном АКБ отсутствует ток зарядки, из-за чего он не заряжается. Это происходит при плохом присоединении проводов к зажимам реле или при обрыве цепи от генератора к батарее. Устраняется закреплением провода в цепи, проверкой и регулировкой регулятора напряжения и реле-регулятора.
  2. Недостаточный ток зарядки при разряженной АКБ или большой при полностью заряженном аккумуляторе вызваны нарушением регулировки регулятора напряжения. Устраняется регулировкой устройства или его заменой.
  3. Горение и перегорание ламп с чрезмерным накалом происходит при нарушении регулировки реле-регулятора или замыкании контактов. Устраняется разъединением и зачисткой замкнувших контактов, регулировкой или заменой регулятора напряжения.
  4. Большой ток разряда после остановки мотора. Происходит при замыкании контактов реле-регулятора (спекании контактов, поломке пружины якоря) или коротком замыкании электропровода. Ремонтируется нахождением и устранением короткого замыкания при отключенном аккумуляторе, проверкой и регулировкой ограничителя тока, размыканием и зачисткой контактов, заменой пружины с регулировкой ее зазора и натяжения.

Как проверить реле регулятор

Поломка реле-регулятора проявляется в систематическом недозаряде или перезаряде аккумулятора. Простейшая проверка устройства проводится тестером в режиме вольтметра на постоянном токе в пределах от 0 до 20В. Щупы прибора при неработающем двигателе подсоединяются к клеммам АКБ и фиксируют показания вольтметра, которые от состояния батареи варьируются в пределах 12-12,8 В.

После двигатель запускают и смотрят на показания прибора: напряжение должно повыситься до 13-13,8 В, в зависимости от оборотов коленвала. Дальнейшее повышение оборотов должно соответственно увеличивать напряжение. Так, на средней частоте вращения оно составляет 13,5-14 В, а при максимальных достигает 14-14,5 В. Отсутствие повышения напряжения после запуска мотора свидетельствует о неисправности реле-регулятора.

Существует вероятность, зарядка аккумулятора отсутствует по другой причине, к примеру, из-за неисправности в самом генераторе. С целью установки диагноза, реле-регулятор снимается для более точной проверки при помощи тестера и 12-вольтовой лампы. Дополнительно понадобятся провода с клеммами, блок питания или зарядное устройство, в котором можно регулировать ток.

После подключения реле к схеме и включении блока питания лампа загорится. Регулятором напряжения постепенно увеличивают ток и следят за показаниями вольтметра или шкалой подключенного тестера. При показаниях до 14,5 В лампа должна гореть, а после превышения гаснуть. Если после уменьшения ниже 14,5 она загорается снова, значит реле-регулятор исправен. При отклонениях работы в ту или иную сторону реле будет давать перезаряд или не выдавать необходимый ток для заряда, что является поводом для его замены.

Подобным образом проверяются интегральные реле, которые в народе называют «шоколадки», применяемые на более старых моделях отечественных машин. Схема также подключается к блоку питания или зарядному устройству через лампочку, которая должна гаснуть при достижении необходимого предела напряжения. При этом нужно обратить внимание на состояние клемм, которые при загрязнении или окислении могут создать дополнительное сопротивление и при исправном реле вызывать потерю напряжения.

Замена реле регулятора генератора

Замена реле необходима в следующих случаях:

  1. Износ щеток, при котором контакт с реле-регулятором пропадает и генератор не работает.
  2. Пробой в схеме устройства, который вызывает в системе увеличение напряжения.
  3. Поломка креплений или корпуса, которое может привести к замыканию.

Процесс замены устройства рассмотрен на примере генератора Лада-Калина. Замена реле-регулятора связан с демонтажем генератора, и осуществляется в следующем порядке:

  1. Снятие с генератора клеммы «минус».
  2. Демонтаж генератора.

3. Отщелкивание на крышке генератора пластиковых фиксаторов и ее снятие.

4. Отключение разъема диодного моста.

5. Откручивание гайки и демонтаж втулки контактной группы.

6. Выкручивание пары винтов, удерживающих реле-регулятор.

7. Демонтаж самого реле.

8. Сборку проводят в обратном порядке.

В электрических сетях очень часто используется автоматическое включение и отключение генератора. Для этого существует реле-регулятор напряжения. С его помощью осуществляется защита генератора от перегрузок, позволяет автоматически регулировать напряжение и силу тока в установленных пределах. Этот прибор, в основном, используется в электрических сетях всех автомобилей и устанавливается в моторном отсеке.

Назначение и устройство реле-регулятора

Данное устройство является трехэлементным, состоящим из трех независимых автоматов. Это реле обратного тока, ограничитель тока и регулятор напряжения. Эти составные части смонтированы на общем основании и закрываются общей крышкой. Для подключения проводов на основании установлены три клеммы.

Автоматическое включение генератора в сеть осуществляется с помощью реле обратного тока при условии его превышения напряжения аккумулятора на определенное значение. При понижении напряжения, происходит автоматическое отключение генератора. В его состав входит катушка и сердечник с двумя обмотками - шунтовой и сериесной с различным количеством витков проволоки, а также ярмо и якорь с системой контактов.

Заранее заданные пределы напряжения генератора поддерживаются с помощью регулятора. В него входят катушка и сердечник с обмоткой, якорь с системой контактов, ярмо, магнитный шунт, а также цилиндрическая пружина.

Один конец обмотки катушки соединен с массой, а другой - с клеммой генератора, проходя через ярмо, сопротивление и обмотки. Таким образом, значение тока и магнитного потока находится в зависимости от напряжения, которое развивает . Регулятор напряжения позволяет автоматически регулировать силу зарядного тока, получаемую за счет разницы напряжений между аккумулятором и генератором.

Использование ограничителя тока

Для защиты генератора от перегрузок применяется ограничитель тока. В состав входит катушка и сердечник с обмоткой, а также обмотка сопротивления, ярмо и якорь с контактами, как и в других составляющих устройствах. Принцип работы устройства совпадает с регулятором напряжения, когда вся нагрузка генератора пропускается через обмотку ограничителя.

Общую нормальную работу реле-регулятора можно определить с помощью , расположенного на щитке приборов и по состоянию самого аккумулятора. Если на амперметре постоянно видно большое значение зарядного тока, несмотря на то, что аккумулятор находится в хорошем состоянии, это означает, что реле-регулятор напряжения работает при повышенном напряжении.

Данное устройство является достаточно сложным прибором, требующим точных регулировок и грамотного обращения. Регулировка должна осуществляться только с применением точных контрольных приборов.

Реле регулятор выпрямитель напряжения